
NASA Technical Memorandum 104807

f ,, ,

J

Making Intelligent Systems
Team Players

A Guide to Developing Intelligent
Monitoring Systems

Sherry A. Land

Jane T. Malin

Carroll Thronesberry

Debra L. Schreckenghost

(NASA-TR-I04801) RAKING
INTELLIGENT SYSTEMS TEAM PLAYERS. A
GUIUE TO DEVELOPING INTELLIGENT
MONITORING SYSTEMS (NASA. Johnson

Space Center) lO0 p

G3/63

N95-30925

Unclas

0058496

July 1995

NASA Technical Memorandum 104807

Making Intelligent Systems Team Players

A Guide to Developing Intelligent Monitoring Systems

Sherry A. Land
Jane T. Malin

Lyndon B. Johnson Space Center

Houston, Texas

Carroll Thronesberry

Debra L. Schreckenghost

Metrica, Inc.

Houston, Texas

July 1995

This publication is available from the NASA Center for AeroSpace Information,
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390.

Contents

Section

Introduction ..
Purpose ...
Scope
Expected Use __.'.'_.'_.'._'.'._'.__... :::iiii
Organization ..
Additional Information ..

1
1.1
1.1.1
1.1.2
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4

2
2.1
2.1.1
2.t.2
2.1.3
2.1.3.1
2.1.3.2
2.1.3.3
2.1.4
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.3
2.3.3.1
2.3.3.2
2.3.4
2.3.5
2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.4
2.3.6
2.4
2.4.1
2.4.2
2.4.3

Real-Time Monitoring Systems ...
Types of Monitoring Systems ...
Rule-based vs. Procedural Systems ..
Passive vs. Active Systems ...
Scope of Monitoring Systems ...
Supported Development Approach ...
Participatory Design ...
Iterative Development ...
Refinement Through Team Interaction with Prototype ..
Evolution of the System (Adaptation of Boehm's Spiral) ..

Understanding the System and Determining Requirements
Project Plan ..
Goals and Objectives ...
Risks ...
Roles of Team Members ...
Software Engineer ..
Technical or Task Expert ..
Human Factors Engineer ..
Schedule and Resources ..
Understanding the Human Task ..
Existing Task(s) ..
The Impact of the New System ...
Tools for Understanding the Task ...
Understanding Supported Operations ...
System Components ...
Data ..
Finding the Data ...
Understanding the Data ..
Subtleties in Working with Data
System Configurations ..
State Diagrams ..
Procedural Timelines ..
Creating a Storyboard ...
Failure Space ..
Transition Timing ...
Data Questionable On/Off-Ramifications to the System ...
Failure of Data to Change During an Expected Transition ..
Multiple Data Values Active, Indicating Conflicting States ..
Relationships with Other Systems ..
Information Requirements ..
Information from Current Displays ...
User-Requested Information ...
Gathering of Information ...

3
3.1

Building the System ..
Organization of the Knowledge Base ..

Page

4
4
4
4
5
5
5
6
6
6

9
9
9
9
9

10
10
10
11
11
11
12
12
12
12
13
13
14
14
15
15
19
20
20
20
21
22
24
23
23
23
24
24

25
25

iii

Section Page

3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.2
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.4.4
3.3.5
3.4
3.4.1
3.4.2
3.4.3
3.5
3.6
3.6.1
3.6.2
3.7

Module Organization .. 25
Organization within Modules .. 27
Object and Structure Design ... 29
System vs. Subsystem Design .. 29
Object Design ... 29
Class Hierarachy ... 30
Inter-Object Structure (Relations) ... 31
System Variables and Parameters .. 31
Grouping of Objects ... 32
Rules .. 32

Organization and Classification ... 32
Rules versus Procedures .. 33
Generic Rules ... 33

Rule Categories ... 34
Making Rules Robust .. 34
Initial State and Command Monitoring Rules .. 34
Developing from State Diagrams .. 34
Identification of Sequency Asymmetry ... 35
Initial Rule Development .. 35
Considering Redundancy in Rule Development .. 37
Status Monitoring Rules .. 38
Transition Timing ... 38
Data Questionable On/Off-Ramifications to the System ... 39
Failure of Data to Change During an Expected Transition .. 41
Multiple Data Values Active, Indicating Conflicting States .. 41
Correction Rules ... 41
Event Timing .. 43
The DESSY Timer .. 43
Timing in DESSY ... 44
Timing Issues ... 45
Quick Test Buttons and Displays ... 46
Setting Up for Real Time 46
Setting Up the Knowledge Base .. 47
Using Real-Time Data ... 48
Setting Up for End Users .. 48

4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.3.3

Working with Real-Time Data ... 49
Related Work .. 49

Types of Data Problems .. 50
Loss of Data ... 50
Erratic Data .. 50

Data Lags and Irregularities During Operational Events .. 51
Data Handling Methods .. 51
Rule Disabling .. 52
Context-Sensitive Bounded Pattern Recognition .. 52
The Lower Limit ... 53
The Upper Limit ... 54
Graceful Recovery .. 54

5
5.1
5.1.1
5.1.2
5.1.3
5.2

Evolving the System through the User Interfaces .. 56
Understanding the User Interface .. 56
The Window into the Expert System ... 56
Layers of the Interface .. 56
Elements of the Interface .. 57
Preliminary User Interface Design .. 57

iv

Section

5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.4.2.1
5.4.2.2
5.4.2.3
5.4.2.4
5.4.2.5
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3

6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.5
6.6
6.7

7
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.3
7.4
7.5
7.5.1

.......... . .. Page

Getting Started ..
Gathering Information Elements ...
Evolution of the User Interface ...

Designing for Change ..
Guilding the Evolution ..
Using a Library ...
The DESSY User Interface ...
DESSY Interface Requirements ..
DESSY Display Examples ..
Telemetry Data ..
Switches and Talkbacks ...

Graphical Icons ...
Text Displays ...
Navigational Items ...
DESSY Screen Arrangement ...
User Input and Control ...
Real Inputs ...
Resets ...
Acknowledgments and Logs ...
Expert System Management ...
Control of the Data Interface ..
Control of the External Software Interface(s) ..
Control of the Expert System ..
The Developer Interface ...
Knowledge Base Organization ..
Access Modes ...
Developer Displays ...

Testing the System ..
Verification and Validation ...
Definitions ..
Verification of Rules ...
Validation of the Knowledge Base ..
Creating Test Objects ..
Writing Test Cases ...
Simulation Procedures ..
Scenario and Configuration Development ...
Testing with Real Data ..
Real Data and System Validation ..
Completeness Checking ..
Real-Time Performance ..

Testing for Continuous Improvement ...
Certification Testing ...

Documentation and User Training ..
Documentation Within the Knowledge Base ..
Knowledge Base Organization ..
State Diagrams ..
Flight Rules and Other Support Documentation ..
Documentation Overhead ...
Documentation of Requirements ...
Documentation of Testing ..
The Cue Card: Map to the User Interface ...
The Tutorial: Interactive Exploration of the Intelligent System
The Tutorial as a Training Tool ..

58
58
59
59
6O
61
61
61
61
62
63
63
63
65
65
65
65
66
66
66
66
66
66
67
67
67
68

69
69
69
69
70
70
70
70
71
71
71
71
72
72
72

74
74
74
76
76
76
77
79
81
81
81

v

Section

7.5.2
7.5.3
7.6
7.6.1
7.6.2
7.7

Page

The Tutorial as Documentation ... 82
Tutorial Design ... 82
Demonstrations ... 82
Effective Demonstrations .. 82
Organization of the Software to Support Demonstrations .. 83
The Developer-User Handover .. 83

References ... 84

DESSY End Effector Failures .. A-1
DESSY Cue Cards .. B-1

Appendix A
Appendix B

vi

Table

1
2
3
4

Tables

Active and Inactive States of Binary DESSY Telemetry'. ...
Data Changes During the MPM Stow Procedure ...
Data Problems and Solutions ..
Rule With Two Pieces of Data and Two Context Variables ...

Page

14
16
52
53

Figure

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Figures

Complete monitoring and diagnostic system ...
Adaptation of Boehm's spiral model to operational prototyping
Remote manipulator system (Shuttle arm) ...
State diagram with transit edge between static states ...
State diagram with transit state between static states ..
State diagram for the end effector snare system "'"
Subsection of the snare state diagram depicting an aborted state
Snare capture sequence timeline ...
Complete end effector capture sequence timeline ..
MPM stowing timeline with transition timing ..
Simplified DESSY module hierarchy ...
Multiple system configurations for DESSY ... i.
Conceptual illustration of workspace organization ..
Example of the MPM system and MPM object definitions ..
Generic rules used with the class hierarchy ..
The manipulator positioning mechanism state diagram ...
DESSY timer definition..
An MSID sensor objecti.i;_ii_;;_;;;;.'f.'.'.'.'._'."_ ..

Examples of data lags and irregularities ..
Sets of immediate data and additional context ...
Example of S and S' for immediate data and additional context
The original DESSY display design for the MPM/MRL system
Existing RMS console displays ...
Information requirements document ...
End effector and MPM/MRL screens ..
Intelligent system life cycle ...
End effector module hierarchy ...
End effector sample workspace hierarchies
The End Effector DESSY Requirements Document ish'o_e'neciiiiiiiiiiiiii_.'.'.'.'._iiiiiill
DESSY Test Case Log--first run ..
DESSY Test Case Log--second run ...
Screen snapshot for recording data patterns ..

Page

5
8

13
17
17
18
18
19
19
21
26
27
28
30
33
35
44
47
51
53
54
59
60
62
64
73
75
75
77
79
80
8O

vii

Introduction

Purpose

The purpose of this Developers' Guide is to assist developers of intelligent systems who work in the space
industry and related industries in their development of complete and reliable monitoring systems. In
preparing this guide, we have drawn from the experiences of 5 years of work in the evolution of the
DEcision Support SYstem (DESSY), a real-time application that supports monitoring and fault detection.
This guide documents our strategies and lessons learned so that other developers of other systems can
work more productively.

This guide is not intended to provide theoretical methodology discussions of various development issues
or to act as a complete documentary on the development process. It is, rather, intended to be a source of
hands-on experiences from which other developers can draw to gain a better understanding of the
problems they face. A cookbook approach is used, with step-by-step instructions and examples
clarifying the stages of developing the system. Because DESSY was developed using the G2
programming tool, the examples provided are in G2. However, we discuss all examples in a generic way
to allow developers using other development tools to find the guide useful.

The true value of this guide lies in examples provided from a real case study (DESSY), which developers
can tailor to their own projects. Our goal is to eliminate time wasted in reinventing the wheel, and to
make the development process as smooth and efficient as possible.

Scope

This guide is based solely on experiences in developing the DESSY expert system in the G2
programming environment offered by Gensym Corporation. To understand its scope, the reader must
understand the scope of DESSY itself, as well as have some understanding of G2 or a G2-1ike tool.
DESSY monitors Space Shuttle telemetry data in real time and uses the real-time capabilities offered by
the G2 package. DESSY also takes advantage of the object-oriented capabilities provided by the G2
software. In reading the guide, it will be helpful to be familiar with G2, but it is not required. The guide
is written with assumption that the user has a familiarity with object-oriented programming and rule-
based systems. Throughout this guide, the software system will be referred to as intelligent system or
expert system or knowledge base interchangeably. Although much of the discussion focuses on rule-
based systems, usually described by the term expert system, many of the principles could be applied to
any type of monitoring intelligent system.

It is also important to understand the boundaries of DESSY's monitoring capabilities. DESSY monitors
telemetry data and makes inferences about commands, state transitions, and simple failures. It is not a
failure analysis system capable of performing in-depth failure diagnostics. It is the authors' opinion that
real-time monitoring and failure analysis are separate functions that should remain separate. DESSY
does, however, identify simple failures detected from telemetry data. In short, DESSY performs failure
detection, rather than failure diagnostics.

The key phrases that summarize the characteristics of DESSY are expert system, real-time, data
monitoring, rule-based, o_ect oriented, and failure detection.

Expected Use

This guide should be used by expert system developers who want to expedite the develop_nent process.
Although an initial scanning of the entire guide is recommended, it is primarily intended to be used
throughout the development process as a reference guide. We have outlined the steps in building DESSY
that worked well for that particular project, and we feel the sequence is general enough to be applied to
other expert systems development tasks. It may be that the organization of this manual does not suit
your specific development needs. In that case, we ask that you remain open to the specific task examples
found throughout the sections. The guide can be used in sequence or in a purely reference manner.
Although we recommend proceeding with your development in the sequenced steps, the examples that
are provided will usually stand alone and should be helpful at any point in your development.

Organization

The organization of this guide has been set up to reflect what the authors believe to be the organization
of the complete development process. The guide begins with a philosophical discussion of preliminary
issues related to development and various development approaches. The first section, entitled "Real Time
Monitoring Systems," should be read first to enable the reader to understand the attitudes and orientations
of the authors.

The remaining sections deal with the process of producing the expert system. Section 2, "Determining
the System Requirements," deals with initial project tasks such as the development of the project planas
well as the process of understanding the existing tasks of the people involved with the system to be
supported, i.e., the expert systems domain. Also involved in these preliminary activities is the definition
of the project scope and the identification of requirements.

Once the developer has the preliminary tasks of section 2 underway, he can move on to section 3,

"Building the System." In this section, design and development phases have been merged. This approach
was used primarily because of the nature of the development tool. The G2 tool and others that have a
graphical development environment support the combination of design and development rather well
because design requirements can be quickly captured within the tool. Once the design is encoded, the
development process is greatly simplified. In fact, at times encoding the design actually accomplishes
parts of the development as well. In any case, these concepts have been combined as a single (but
iterative) phase and are presented in section 3.

Another area of great concern in developing intelligent monitoring systems is understanding the data
source. Section 4, "Working with Real-Time Data," addresses issues software developers face when tying
monitoring systems to real data sources. These issues center on noisy and unreliable real-time data. The
problems are discussed in this section, along with a methodology used to overcome them.

Section 5, "Evolving the System through the User Interface," relates the close tie of operational
prototyping and software evolution with the user interface of the intelligent system. The user interface is
the window into the intelligent system during design and development as well as during use. This section
provides insight in using the intelligent system interface, beginning with a storyboard, to guide software
evolution to its final state.

Section 6, "Testing the System," covers a crucial phase in the life of the project. Although testing is
among the iterative steps of design and development, we chose to treat it separately because it differs
somewhat from the other steps in that the end users (flight controllers in the case of DESSY) must be
highly involved in the testing phase. This contrasts with the design and development phase, which is
more a programmer's task. (although the end user certainly must be involved in all project phases.)
Section 6 discusses verification and validation, and covers various types of testing that are necessary
throughout the system development.

Documentation and training are also important parts of an intelligent system project, particularly since
the system will almost certainly evolve as new information is learned or as the physical system being
monitored changes. Thus we have included Section 7, "Documentation and User Training," which
discusses the types of documentation and training we felt were necessary during DESSY development.

Finally several appendices are included which contain specific DESSY documentation. Appendix A,
"DESSY End Effector Failures," includes listing of rules from DESSY, and Appendix B, "DESSY Cue
Cards," contains the cue cards from both DESSY subsystems. These appendices are intended to provide
software developers with further detailed information about DESSY.

Additional Information

This Developer's Guide is actually only part of a larger body of information designed to assist intelligent
systems developers. Also available are an electronic library, software demonstrations, and additional
documentation. The Control Center Library For Application Reuse and Exchange (CLARE) is an
electronic library containing sample applications or their documentation and on-line literature, including

2

thisDeveloper'sGuide,to supportcontrolcentersoftwaredevelopers. CLARE has been developed in the
hypertext mark-up language (html) for Mosaic browsing. The goal of CLARE is to provide interactive,
on-line support for requirements definition, concurrent development and improvement of advanced
software. CLARE is available at the following URL: http://tommy.jsc.nasa.gov/-clare.

Demonstrations of DESSY and other intelligent systems software are also available currently through the
Intelligent Systems Branch at Johnson Space Center, and eventually will be through CLARE. For
information about obtaining a demonstration or for further information about CLARE or other related
software, contact the authors of this document.

Finally, additional literature is available to support software developers. The "Making Intelligent
Systems Team Players" (Malin and Schreckenghost, 1991) document set provides case studies and
software design information related to DESSY. This document is available electronically through
CLARE.

Section 1

Real-Time Monitoring Systems

Because the definition of real-time monitoring systems may vary from source to source, the definition as
applied to the DESSY project is provided. DESSY monitors a set of Shuttle telemetry data which has an
update rate of once per second. Any reasoning done in DESSY involving time uses the second as the
unit. Because G2, and therefore DESSY, runs on the UNIX operating system, which is not a true real-
time operating system, real-time processing is limited. Thus for DESSY, real-time monitoring means
monitoring data which is periodically updated once a second, processing that data in the allotted time,
and reasoning over that data in that same second. It is recommended that the reader gain a thorough
understanding of real-time processing; however, that discussion is beyond the scope of this document.

The following sections cover topics germane to understanding real-time monitoring systems. Section 1.1,
"Types of Monitoring Systems," addresses different system classifications. Section 1.2, "Scope of
Monitoring Systems," covers trade-offs associated with limiting an expert system's scope. Finally,
"Supported Development Approach" (section 1.3) explains the operational prototyping approach used
throughout this guide.

1.1 Types of Monitoring Systems

Monitoring systems can be broken into categories by their logical structures and the classification of their
domains. Logically, a system may contain rules, procedures, or both, depending upon the nature of the
monitored activities. Likewise, the system may be used for monitoring passive or inactive systems in
which the goal is to observe fairly static sensor readings and flag anomalies, or the software may monitor
very active systems in which changes are expected and normal. Challenges of working with real-time
data apply in any case.

1.1.1 Rule-based vs. Procedural Systems

DESSY is primarily a rule-based system, but does contain procedures. Although the focus of this guide
is on rule-based systems, there are similarities in the ways in which rules and procedures are used, and
there are many systems, like DESSY, that use a mix of rules and procedures.

When should rules be chosen over procedures and vice versa? Procedures are lines of code that are
sequentially executed. When activities take place that are known to be sequential, procedures are the
more appropriate model. It is often the case in monitoring data and anomalies, however, that there are
many paths that may occur in a given set of data over a specified time period or activity sequence. In
these situations, rules are the more appropriate model. It will be up to the developer to use the
appropriate tool for a particular scenario. In any case, both techniques are available and can be used
separately or together. (Bachant and Soloway, 1989)

This guide focuses primarily on developing rules since DESSY contains mostly rules. However many of
the steps presented apply to writing either rules or procedures, and many of the issues dealing with
handling real-time data may be applicable to both rules and procedures alike.

1.1.2 Passive vs. Active Systems

Another distinction between types of monitoring expert systems is whether a system is passive or active.
If a system monitors operations in which little or no change in the data is expected, the system is passive.
The goal of a passive system is to remain in its current state. Any change from this state indicates an
error. The original Bus Loss Smart System (BLSS) is an example of an expert system that is normally
passive. This G2 system monitors Shuttle power buses, which normally remain in a static configuration.

In contrast, an active system expects frequent data changes, and therefore configuration changes, as a part
of normal activities. These expected changes cause monitoring to be more complex, due in part to the
multiple configurations that are expected to occur. Additionally, it can be challenging to monitor a state
transition in which multiple data values change simultaneously or over a period of time. (Gabrielian and
Franklin, 1988)

4

DESSYis anexampleof anactivesystem,althoughDESSYoperatespassivelyfor longperiodsof time.
Mostsystemshavebothpassiveandactivestagesduringthemonitoringprocess.Thesoftwaredeveloper
shouldbecomeawareof all systemconfigurationsandtransitionswhenplanningtheexpertsystem.Only
whenthesehavebeenidentifiedandthoroughlyunderstoodcandevelopmentbegin.

1.2 Scope of Monitoring Systems

Anotherfactorin planningareal-timemonitoringsystemis thescopeof thesystem.Real-timesystems
havethespecificjob of keepingupwithadatastreamin realtime. Any furtheranalysisof thedatauses
valuableCPUresources.Thusit is importantto realizethatthereis a significanttrade-offbetweenstrict
datamonitoringanddataanalysis.Thistrade-offis dueto limitedperformanceandwill alwaysexist
givenareal-worldsituation.Althoughby necessityanymonitoringsystemperformssomeanalysis,the
authorsbelieveit is necessaryto limit theanalysisfunctionalityof areal-timemonitoringsystem.In an
idealscenario,amonitoringsystemandananalysis(ordiagnostic)systemareworkingsideby side.The
monitoringsystemwatchesthedata,makesbasicstateandstatusconclusions,andthenfeedsthose
conclusionsinto thediagnosticsystem.Thediagnosticsystem,whichmightserveasadatabaseor also
includerecommendedactions,is runoff-line,i.e.,notreal-time.This is necessary because this type of
system will have many information sources, including human inputs and other data parameters, that are
not part of the telemetry stream. Figure 1 depicts the scenario the authors feel will most adequately meet
the needs of the complete monitoring and diagnostic system.

data

data

state

real-time I status

monitoring I v

Figure 1.

human input

other parameters

diagnostics
I I I I o I II II IIl I l I Illllll IIiiiii ii ill ii iiiii

- recommended
data base -

: actions
I

Complete monitoring and diagnostic system.

1.3 Supported Development Approach

This developer's guide supports operational prototyping, a software development approach that
originated from observations of successful intelligent system projects at Johnson Space Center, although
similar approaches have been employed by other organizations. (Jordan, et. al., 1989) The approach is
called operational because the mature products are capable of functioning in an operational
environment--receiving data from operational sources and providing conclusions in a timely fashion in
conjunction with human operators. The approach is called prototyping because it is informal and
iterative. The key features of operational prototyping are participatory design, iterative development, and
refinement through team interaction with the prototype.

1.3.1 Participatory Design

Participatory design refers to the practice of including users on the software development team. Users
have an intimate understanding of the human task being supported by the software system. While
systems analysts and programmers could usually learn to perform the users' tasks, the training time would
often be considerable and their competency of task performance would still be lower than that of a
highly experienced user. Consequently, including a user on the design team is usually more efficient and
allows a more thorough consideration of the supported human task. These advantages become stronger
as the human task becomes more complex.

For example,DESSYis anintelligentsystemdesignedto supportmonitoringof theSpaceShuttle
payloadbayarmby ground-basedflight controllers.Themonitoringtaskis difficult, complex,and
dependentonextensiveengineeringknowledgeof theShuttlearm. By includinga flight controller,the
developmentteamavoidstheneedto performanexhaustiveandexpensivetaskanalysis.The risks of
overlooking some of the users' needs, or of making the system unusable within the context of the users'
other ongoing tasks, are also avoided.

The value of participatory design can be summarized by the following statement taken from Space
Operations Seminar held October 20, 1992, at the University of Houston at Clear Lake. "The users know
what they don't want, but not necessarily what they do want." Having a user play an active role in
development greatly increases the chances of producing a system that the user both wants and can use.

1.3.2 Iterative Development

Iterative development is an approach whereby the software system is developed as a series of successive
approximations to the final product rather than as a single, monolithic, integrated system. Iterative
development is especially good for projects with unstable requirements. Examples are software systems
that provide innovative support of user tasks and those that include innovative applications of new
technology. Because these projects are innovative, developers are likely to make discoveries of new
requirements after they have begun the project. If they have adopted an iterative approach, it will be
easier to respond to those discoveries by revising the current system and revising plans for future
enhancements. If, on the other hand, they have adopted a monolithic approach, these discoveries will
probably come too late to be of any value to the current system.

For example, if the first iteration of development involves the core of the basic architecture, the
developers can verify whether that architecture has the desired properties before designing the remainder
of the system in detail. If the architecture proves to have unanticipated problems, it is much easier to
change the architecture and redirect the remainder of the project with a minimal cost in development
resources. Because developers have the least amount of experience with innovative projects, they are
more likely to need redirecting, thereby making iterative development especially valuable in these cases.

1.3.3 Refinement Through Team Interaction with Prototype

The third key feature of operational prototyping is refinement through team interaction with the
prototype. Because the team interacts with a prototype, each person is able to see the implications of
design decisions. What You See Is What You Get, or WYSIWYG, is a descriptor for applications that
immediately show the full implications of user input. Prototyping is the WYSIWYG of analysis and
design. Also, because all team members interact with the prototype, several viewpoints can be considered
simultaneously. If the team has expertise in intelligent systems development, Space Shuttle subsystem
engineering, user task performance, and human factors engineering, then the implications of a proposed
change can be evaluated from each of those perspectives. Because these viewpoints can be considered
simultaneously, the team is able to make dynamic trade-offs. For example, if a proposed change seems
ideal except for implementation feasibility, the intelligent system developer can voice an objection along
with the reason behind it. At that point, a brainstorming session can ensue in which potential alternatives
are proposed by all participants. In this situation, with all experts present, a solution that satisfies all
participants is much more likely to be found. This is the impetus behind concurrent engineering in
systems development.

1.3.4 Evolution of the System (Adaptation of Boehm's Spiral)

A common problem with rapid prototyping is a type of wandering project development, in which the
project has no defined goals and tends to follow the interests of the developer. The objective is to
balance goal-directed development with the ability to respond to unexpected discoveries during
development. An adaptation of Boehm's spiral model is the best way to achieve that balance. This
adaptation is illustrated in figure 2. As a spiral, this approach has two types of components, a cyclic
component and an outward progression component.

The component illustrated in panel A of figure 2 is the cyclic component. Starting with the upper left
quadrant, each development iteration begins with a consideration of objectives, alternatives, and

constraints.This is followedby ariskanalysisin whichalternativesareevaluatedanda strategyfor
resolvingthoserisks is formulated. The third step is to plan the next prototype iteration. The final step is
to develop and evaluate the next prototype iteration. Each prototype iteration is expected to be an
enhancement of the previous iteration.

The second component of the spiral is an outward progression, across cycles. It is illustrated in panel B
of figure 2. According to Boehm's spiral model, the issues posing the greatest risk to the project are to be
addressed first. If there is an aspect of that application that cannot be accomplished as planned, it is
important to discover that fact early. If the project must be scrapped, it can be scrapped before many
resources have been expended. If the application must be redesigned as the result of unanticipated
discoveries, it is better to make those discoveries before the remainder of the application has been built.
As a rule of thumb, the risky aspects of the project are addressed early, reserving the better understood
portions of the project for subsequent development iterations.

In the DESSY project, Boehm's spiral has been adapted for rule-based systems to support real-time
monitoring of space systems by flight controllers via telemetry downlinks. The sequencing of system
development is based on a combination of perceived risk and a need to develop a useful software
architecture and object structure. The progression of development for DESSY modules is presented as an
example. These recommendations are not presented so that developers will follow them without
deviation. Instead, active consideration is recommended based on the specific risks of the project at
hand--and active reconsideration as the project continues. The reasoning behind recommendations is
shown as an example of how to make the sequencing decisions rather than as a justification for
sequencing all projects in exactly this manner.

The objectives addressed by successive DESSY iterations are:

1. Displaying relevant telemetry values in a readily understood fashion

2. Inferring (from telemetry data) and displaying the current state (usually the physical
position) of the subsystem being monitored

3. Making the rules resilient to noisy and occasionally missing telemetry data values

4. Making inferences about the status (health, failure configurations) of the monitored
subsystem

This sequence of development is based primarily on risk. The displays currently in use by flight
controllers show telemetry values. The worst way in which the replacement systems could fail would be
to prevent the display of telemetry in a reliable, understandable manner. If the telemetry can still be seen
even if the state and status inferencing fails, the software can still be used. Furthermore, since the state
and status inferences also use telemetry values, it is desirable to develop the telemetry software objects
before writing state and status rules. Consequently, the objective of displaying relevant telemetry values
in readily understood fashion must be addressed before anything else.

Next, the state (position or orientation) inferences need to be developed. Once the state rules have been
written, enough complexity has been incorporated that testing with real, noisy data streams is challenging.
If the noisy data can be accommodated, then the status rules have a stable foundation. Otherwise, status
inferences based on faulty state conclusions are useless. Status rules are developed last because they are
based on expectations established by the state conclusions. Thus, the sequencing of development should
be driven by a consideration of risks to the project.

alternatives, \

altematives, analyze \

constraints risks I

Develop, Plan next /

_k vestry prototype /

Panel A. Cyclic component of spiral development.

St'11ratus inferences

J Robust rules (noisy data)

J State inferences

J Graphic display of telemetry

Panel B. Outward progression of spiral -- across development cycles.

Figure 2. Adaptation of Boehm's spiral model to operational prototyping.

Section 2

Understanding the System and Determining Requirements

The first step in building any successful software application is to understand the system and determine
the software requirements. To ensure this step is achieved, several steps must take place. First, a
preliminary project plan should be developed and agreed upon by all team members. Section 2.1,
"Project Plan," provides some suggestions for activities in developing the plan. Next, the developer(s)
should understand the human tasks in order to produce a correct and useful representation of those tasks.
This includes understanding existing tasks, how these tasks relate to the supported operations, and how
the tasks will be changed after the new system is in place. These issues are discussed in Section 2.2,
"Understanding the Human Task," and Section 2.3, "Understanding Supported Operations." Once these
initial steps are taken, the project scope and definition can be determined and included in the project
plan. Finally, information requirements, discussed in section 3.4, should be well understood before
programming takes place. Meeting each of the subtasks will provide order to the project and increase the
chances of success.

2.1 Project Plan

The project plan begins during the first development iteration, shown in figure 2, panel A, in the
"Determine Objectives, Alternatives, and Constraints" quadrant, and should be reconsidered with each
development cycle. During each cycle, project team members decide whether the plan should be
updated, depending on the formality of the plan, the importance of changes, and the resources available.
The formality of the plan depends on the project team. Some managers will require a formal document.
Others will request a briefing of the project plan. At any rate, the following information should be
included in the project plan so it can assist in guiding the project and building consensus about project
objectives.

2.1.1 Goals and Objectives

One of the most important measures to prevent "wandering project development" is to build consensus
among managers and the development team on project goals and objectives and to clearly document
these goals and objectives. An important consideration for truly innovative projects is that the project
direction should occasionally change, based on new discoveries. Consequently, it is important to
distinguish goals that will define project success from those which are secondary and concern
implementation.

2.1.2 Risks

The explicit identification of risks and constraints helps to identify the best development sequence, the
people to include on the development team, and the amount of effort to spend in avoiding the risks.
Knowing up front the types of risks likely to occur can prevent common pitfalls and greatly enhance the
development process.

2.1.3 Roles of Team Members

In operational prototyping, people with critical expertise interact with a prototype to improve its design.
To achieve a successful software product, it is helpful to have a development team composed of the right
mix of individuals, each having a key role throughout the project. The determination of critical expertise
will depend on project objectives and project risks, but it will usually include user task expertise,
softwaredevelopment expertise, and human factors expertise. While the number of people on an
operational prototyping team should probably be between two and six, the specific number is less
important than the following:

• All needed critical expertise must be represented.

• Every viewpoint must be discussed openly when interacting with the prototype.

• The whole team must meet regularly around the current prototype.

• Teamdiscussionsshouldusuallybedirectedtowardimprovements,ratherthanacceptanceor
rejection.

• Eachproposedimprovementmustbeevaluatedinteractivelyby theteamsothatsolutionscanbe
negotiatedwhicharereasonablyoptimalfor eachviewpoint.

Throughoutthedevelopmentprocess,eachteammembershouldbeawareof therolesheor sheneedsto
play. Specifically,thereis theroleplayedin softwaredesignanddevelopment,andlaterin construction
of softwaretestcases.Thisrole is filled primarilyby asoftwareengineer.In addition,technicalexpertise
is neededaboutthephysicalsystemthatis to bemonitoredandthehumantasksinvolvedin monitoring
thatsystem.Development,userevaluation,andsystemtestingareall importantpartsof thetechnical
expertroles. Finally,ahumanfactorsengineermustoverseeusabilityissues,ensuringthatthefinal
productmeetstheuserrequirementsandimprovestheoverallprocess.Thefollowingdiscussion
highlightstherolesof eachteammemberandprovidessomeinsightobtainedduringtheDESSYproject.

2.1.3.1 Software Engineer

The software engineer (SE) should be knowledgeable about the development software and environment.
He or she is both the designer and developer of the complete software system and will be responsible for
ensuring that adequate testing is performed throughout the project life cycle. In the DESSY case, this
role was shared by various individuals throughout the project.

Although it is useful for the SE be familiar with the development tool, in reality this person may be
learning the tool during the development process. If this is the case for your project, exploit help
provided from your tool's vendor. A willingness to aggressively pursue vendor help can be a great
payoff to the project, while providing good feedback to the vendor on the usability of their product.

Also of particular importance for the software engineer is understanding performance constraints of the
tool. Because the final application will be working in real time, it is important to know how to maximize
performance. This is not a strength of DESSY, and in retrospect the developers feel a greater emphasis
should have placed on performance.

2.1.3.2 Technical or Task Expert

The technical expert (TE) provides knowledge about the physical system being monitored, as well as the
monitoring process. This person, who is usually an end user of the software system as well, must fully
understand both the system hardware and the human monitoring process. Because other members of the
team are unlikely to understand these aspects, it is crucial to have an experienced expert who is willing to
be an active participant in the project. A predetermined number of hours per week should be set aside
for the TE and SE to work jointly on the project and exchange ideas.

Besides providing technical knowledge and possibly filling the role of user-evaluator, the TE also has
responsibilities in software testing. Although the software engineer can create the tests to check the
program logic (verification), the technical expert must verify that the system correctly reflects the real
process; i.e., the technical expert must check the model and associated rules and procedures that the
programmer has constructed. Thus the TE is responsible for the validation part of the testing process.

2.1.3.3 Human Factors Engineer

The third major player in the software development team is the human factors engineer (HFE). The HFE
is responsible for ensuring that the system meets usability requirements including not only the graphical
interface, but the usability of the system as a whole. The HFE would likely present an initial interface
design from which other team members can work, and would be responsible for overseeing the interface
design throughout the development process.

10

Additionally,this teammembermustinterfacebetweenthesoftwareengineerandthetechnicalexpert/end
user,both (or all) of whommaynotbe trainedin humancomputerinteractionissues.The HFE must
work with the SE in developing an interface that the software will support, while working with the TE to
develop a meaningful interface. It is the HFE's responsibility to make sure the final software interface
satisfies all team members.

2.1.4 Schedule and Resources

A schedule with resource allocations is a necessary part of any project. The schedule sets expectations
about the project duration and the amount of effort that will probably be expended. Lack of resources
and other responsibilities of team members, however, can lead to schedule slips. If your development
team is similar to that of DESSY, it will be composed of dedicated people, but people who have other
important responsibilities that by necessity often take precedence over software development. Be
prepared to adjust the project schedule to meet the needs of the entire team.

Schedules for operational programming have some special features because of the exploratory nature of
the approach. First, if some milestones are not negotiable, they should be specifically identified. This
will allow contingency planning when surprises are encountered during development. Second, while
major events and expected completion dates should be identified through the completion of the project, it
is probably not reasonable to plan a detailed schedule throughout the project. Detailed scheduling
should go through the next development cycle. After that, the project may need to respond to new
discoveries by changing directions, thus rendering obsolete any detailed plans for subsequent iterations.
Developers must strike a balance, sticking to the important objectives without unnecessarily restricting
their explorations of ways to accomplish them efficiently and effectively.

2.2 Understanding the Human Task

Once a preliminary project plan has been developed, some effort to understand the human task(s) should
be put forth to ensure that the intelligent system will accurately automate or supplement these tasks.
(Malin and Schreckenghost, 1991) This includes both existing tasks that the potential users perform and
new or altered tasks after the system has been implemented. The following sections provide helpful hints
on accomplishing this understanding and outlines some specific tools that can be helpful.

2.2.1 Existing Task(s)

Understanding the existing tasks of the user (flight controller) can be very challenging, especially when
you must attempt to emulate those tasks. The need to have a team member who understands the user
tasks emphasizes the strength of participatory design in operational prototyping. In ideal circumstances,
the end user is always available to assist the programmer in developing software that precisely fits in the
user's workplace. Because circumstances are rarely ideal, however, the following recommendations are
made to assist the developer in understanding the tasks.

Regular meetings should be held with the end user (technical expert) to discuss the tasks. Initial
discussion will cover existing tasks; eventually the development team will need feedback from the user on
the software's model of existing tasks; finally, the team will need to evaluate the impact of the software on
the tasks.

Work should be done in the end user's work environment when possible. This will allow all team
members to objectively observe the user performing the task, and the user is likely to do a better job at
evaluating the software if software inspection is done within the user's own environment. Finally, the
system will eventually need to be integrated into the user's work environment. Occasional developments
in this area will greatly expedite the ultimate integration process.

In addition to working closely with the end user, the development team may wish to map out the existing
tasks. Section 2.2.3 discusses common tools available for understanding the user's tasks. This is
particularly important if the end user in unavailable throughout much of the development process.

11

2.2.2 The Impact of the New System

Once the existing human tasks are well understood, the development team should evaluate how the new
intelligent system will effect those tasks. This is important to ensure that the right problems are being
solved and the new software will provide a true enhancement over the existing system. It is also important
to provide some up front insight to the end user on upcoming changes to existing tasks.

Because the applications covered in this guide are of the automated monitoring type, a key element of the
new task is that of human supervision of the new system. It must be understood how this supervisory task
impacts other responsibilities of the user. For example, will the intelligent system display replace existing
displays or will the user have an additional screen to monitor? Will the user be required to interact with
the intelligent system or will it require only monitoring? In any case, the impact of the system should be
analyzed up front and the user should be made aware of this impact as soon as possible.

2.2.3 Tools for Understanding the Task

Understanding the human monitoring task may be difficult for members of the development team not
familiar with the users' work environment. Interviews with end users, both those on the development team
and other users, are recommended. If possible, it is also helpful for the software developers to sit in with
users during operations. This allows objective observations of the work environment and determination
of how the software system will fit in.

Other tools available that might help the team understand the users' tasks are data flow diagrams and state
diagrams. A data-flow diagram reflects changes in data as the system changes. A state diagram reflects
changes in system state due to data changes. Both these tools might be used as a communications
medium when communicating with the user. In any case, building a good relationship with the end user,
whether or not the user is a member of the development team, will help the team better understand the
task at hand and lead to a better end product.

2.3 Understanding Supported Operations

To successfully establish the project scope and definition, the supported operations must first be
understood by the development team. This includes familiarity with both the hardware system and the
telemetry downlink parameters. Elements of the operations are composed of system components,
telemetry data, system configurations, failure space, and relationships between the system being modeled
and other systems. Outlining these elements will prevent wandering of the project and keep the
development team focused.

2.3.1 System Components

The first step in understanding supported operations is the identification of the pieces and subpieces of
the hardware systems that are being monitored. Identification of the hardware to be supported will help
in establishing preliminary boundaries for the software system. As with other steps in building the
system, even hardware identification may be iterative. As the system evolves, the scope of the hardware
may change to reflect interfaces with other systems or lack of available telemetry data.

A goal of DESSY is to eventually monitor telemetry associated with all parts of the Shuttle arm. To
manage such a large set of data, the original DESSY designers divided the arm into several functional
subsystems, two of which are covered in the existing DESSY and thus used throughout this guide. The
first subsystem to be modeled was the MPM/MRL subsystem. The MPMs, or manipulator positioning
mechanisms, are the pedestals the arm rests on when it is cradled in the payload bay. MPMs can be
stowed or deployed, respectively indicating whether the arm is in the rolled in or roiled out position in the
.payload bay. The MRLs, or manipulator retention latches, are the latches that latch the arm down when it
ts cradled in the payload bay. The MRLs can be latched or released. There are four MPMs and three
MRLs. They are depicted in figure 3. (Collins, 1988)

12

__ End
Effector

Aft
and MRL

-,;Ip.o'_ __ Mid
__..._'-- Fwd MPM and MRL

Shk _ RMS MPM andMRL
MPM (arm)

Figure 3. Remote manipulator system (Shuttle arm).

Hardware components are hierarchial in nature, and once the primary hardware is identified, the team
must delve deeper into the system to find additional hardware components. For example, each MRL and
the shoulder MPM (where the arm is attached) contain two motors. Because there is telemetry available
for each of these components, they were modeled as separate objects within DESSY. Other hardware
components identified were various switches and power sources or paths. Not all hardware components
have sensors, and although they might be modeled within the software system, they cannot be directly
monitored.

The end effector system, the second RMS subsystem to be modeled, was also broken down into its
hardware components. At the highest level, the system has two functional subpieces: the snare
mechanism and the rigidizing mechanism. The snare mechanism can be in an open or closed position.
The rigidizing mechanism can be rigid, derigid, or extended. The end effector also has two motors that
drive both these mechanisms. Other hardware includes switches and several external systems. The
location of the end effector on the Shuttle arm is also depicted in figure 3.

Identification of system hardware is crucial because not only does it allow the developer to understand
the functional system, it provides the imtial template for the expert system model. The next section, Data,
will further refine that template. Identification of data may be thought of as the hardware model at the
sensor level for which telemetry is available. How to choose the appropriate data to include in the model
is discussed below.

2.3.2 Data

2.3.2.1 Finding the Data

Once you have an idea of what hardware will be monitored, finding the data associated with that hardware
should be straightforward. As with other steps, finding data will probably be an iterative process.
Telemetry that is flagged for use may drive additional hardware to be included in the design and vice
versa. For the mission control environment, most existing data is displayed on the console displays.
Obtaining a copy of all the associated console displays for the subsystem being modeled is a good place
to start.

Other important sources for gaining information about data include drawings of the Space Shuttle panels,
schematics, and the SDRS DTE Display Description Report (SDRS, 1992). The technical expert or end
user will need to assist the developer with data identification. Obtaining a copy of SDRS is of particular
importance because this document contains the MSID numbers needed by the application to get the
individual pieces of data. Schematics will also have specific telemetry information in them and are
important to use in understanding the data flow. Beware of questionable information, however.

13

Documentationcancontainmistakes,particularlywhenit includesmuchnumericdata. As arule of
thumb, when in doubt ask the expert.

2.3.2.2 Understanding the Data

Once the data sources have been located, the challenge of working with data just begins. The next
important step is to understand the data and how changes in system hardware configuration lead to data
changes. A good place to start is with the schematics. All team members should learn to read schematics.
This is a crucial step in thoroughly understanding the system and related data. Determine the data set to
be used and be prepared to stay within the monitoring/diagnostic bounds that it provides, at least initially.
You may want to identify other data that would be good candidates for expansion of the knowledge base,
or perhaps will be needed when the existing set just can't to the monitoring job.

Other considerations necessary in DESSY involved working with binary telemetry data. The data state (1
or 0) must be understood; i.e., it must be determined which state implies active and which inactive. For
example, in DESSY there were several key types of data available. Depending on the type, some data had
an active state of 1 and others had an active state of 0. Table 1 displays some types of DESSY data and
their states. This information can be obtained from system schematics or from the expert.

Table 1. Active And Inactive States Of Binary DESSY Telemetry

Data Active Inactive

microswitches 1 0

opstats 0 1

enables 0 1

command 1 0

mech pwr 1 0

2.3.2.3 Subtleties in Working with Data

Finally, there axe some subtleties in working with telemetry data of which the development team should
be aware. Below are some specific questions and issues to keep in mind when looking for telemetry data
and understanding how it works. With these are included experiences with the MPM/MRL and end
effector subsystems.

Telemetry Overlap Within the System--Is there any telemetry used in more than one operation, providing
different indications at different times?

Some opstats (motor data) are used in both MRL and MPM operations. This same data indicates
either MRL or MPM motor activity, depending on the operation. (Operation must be determined
by context.)

Data Overlap with Outside Systems--Is there any telemetry used also in other systems?

Some DESSY opstats are also used for the KU band antenna. This same data indicates either
DESSY activity or KU band activity, depending on the operation. (Operation must be determined
by context.)

14

Lack of Data for Symmetric Operations--What are the cases where there is telemetry for one operation,
but no telemetry for the reverse (symmetric) operation? Data will not always be symmetric for symmetric
operations.

In the MPM system, there is a stow command indicator, but no deploy command indicator.
Likewise for MRLs, there is a latch command indicator, but no release command indicator.
Additional data had to be used to determine command.

Single Telemetry Point--What are the cases where there is only a single piece of telemetry on which a
conclusion can be based?

Even though we have an MPM stow command indicator, that single data point might fail.
Therefore we look at additional data related to stowing to make the conclusion. Whenever
possible, we want to look at multiple data when making a conclusion.

2.3.3 System Configurations

The process of understanding system configurations involves knowing both the hardware and related data
that are used in each configuration, and understanding the relationship between changes in the hardware
and changes in its corresponding data. Not only does the developer need to identify system states, which
identify configurations, but he or she also needs to understand the procedural operations involved in
making a transition from one state to another. Two tools are particularly useful in understanding system
configurations and procedures. Each is discussed in the following subsections.

2.3.3.1 State Diagrams

An excellent tool for mapping changes in state of the hardware system is the state diagram, where the
states and transitions are represented as a directed graph. Each system state, or configuration, is
illustrated as a state node, and the transitions between them are illustrated as edges. For the purposes of
modeling the system based on telemetry, transitions between nodes are driven by changes in the
telemetry.

The example below illustrates IVtPM system states and transitions during the MPM stow procedure. Table
2 identifies each MPM state involved in a stow and shows the related data states (active/inactive) during

each phase. Note that the transition state is identified as a valid state. This is appropriate because data
changes are involved both entering and leaving this state. Furthermore, even though it is a transition, i.e.,
a change from one static state to another, there is a finite time period that the physical system remains in
this state. Thus, in the example a deployed state, an in-transit state, and a stowed state are identified.
Explanations of the data presented in this example are as follows. Table 2 provides the data values of the
steps of the MPM stow procedure.

When identifying state changes for your system, we recommend constructing a table similar to that shown
above. To construct the table follow these steps:

,, Identify the valid states, including transition states.
• Identify all data associated with these states.
• Identify data values for each state.
• Include new states if data changes indicate you should do so.

After a table like that shown in table 2 is constructed, you should be prepared to construct the state
diagram. Developing the state diagram will lead to better understanding of the monitored process.
Figure 4 shows a first pass for a state diagram for the MPM stow procedure. (It did not include the State
2 of table 2.) All stable (or static) states, the beginning (deployed) state and the ending (stowed) state
were identified. The transition state was initially represented as an edge. Since the stowing process takes
32 seconds, the edge was labeled accordingly.

15

Table 2. Data Changes During the MPM Stow Procedure

MPM Stow Procedure

State 1 MPM deployed deploy microswitches

stow microswitches

stow opstats

stow command

active

inactive

inactive

inactive

State 2 MPM stow-in-transit deploy microswitches

stow microswitches

stow opstats

stow command

inactive

inactive

active

active

State 3 MPM stowed deploy microswitches

stow microswitches

stow opstats

stow command

inactive

active

inactive

inactive

Key: deploy microswitches: indicates a deployed state
stow microswitches: indicates a stowed state
stow opstats: indicates motors are stowing
stow command: indicates a stow command is being given

16

Standard State Diagram

transit

(32 seconds)

Figure 4. State diagram with transit edge between static states.

However, the "transit" state concept is important. After the initial diagram was complete, it was then
revised to include the transition state as a valid state in the diagram. Note that both state diagrams are
equivalent representations of the same process. The transition edge of figure 4 became a new state with
"epsilon" edges going between it and the states it previously connected. The epsilon notation, commonly
found in state diagrams, simply means there is an instantaneous transition between states with no time
delay involved. Figure 6 illustrates the revised state diagram used throughout DESSY development.
Although either diagram could be used, the one depicted in figure 5 represents the states and transitions
more precisely. (Hopcroft, 1979)

Revised (epsilon) State Diagram

Figure 5. State diagram with transit state between static states.

Once the procedural data changes have been identified and the state diagram developed, the developer
will have a fairly complete view of the operation, At this point, the developer should construct a state
diagram covering all procedures, with data changes labeled directly on it. Figure 6 provides a more
complete state diagram, an example of the end effector snaring system. Six states have been identified,
along with the three microswitches that indicate state changes. In this example motor (opstat) and
commanding data that affect the changes are not shown. The procedures shown include the snare closing
with capture, closing without capture, and opening. The snare closing with capture procedure is
represented in the bolded states. The important information to note from this figure is the states and their
relationships to one another, the data values, and the timing information indicating how long the system
would nominally remain in the given transition state.

Note that there is no failure information represented in figure 6. State diagrams may be extended to
include non-nominal operations. Figure 7 shows a section of the snare state diagram from figure 6 with
an "aborted close" state added. The concept illustrates a simple extension to the state diagram as defined
above. It will be covered in more detail in section 3.3.4, where status rules are discussed.

17

End Effector Snare System State Diagram

OPEN

open = 1
close = 0

capt = 0

open = 0
close = 0

capt = 0

(1-2 sec)

open = 0
close = 1

capt = 1

CLOSED-

NO-CAP

open = 0
close = 1

OPENING capt = 0

open = 0 open = 0
close = 0 close = 0

capt = 0 capt = 1

(1-2 sec) (0-1 sec)

Figure 6. State diagram for the end effector snare system.

Snare State Diagram with Aborted State

commanding

___ _ regained

Figure 7. Subsection of the snare state diagram depicting an aborted state.

18

In summary, state diagrams are essential step to understanding the system configurations that the team
will need to model. They should be constructed as soon as the relevant data has been identified. In
addition to providing information to the developer, their graphical nature allows them to serve as an
effective communication tool between the developer and system expert or end user. State diagrams are a
classic computer science tool that should be fully exploited.

2.3.3.2 Procedural Timelines

A second tool that can be extremely helpful in understanding the system procedures and transitions is the
procedural timeline. Timelines give a chronological step-by-step description of the system transition
states. They may, in fact, contain the same information as the state diagram; however, they may be more
useful in some cases. They are most useful in modeling procedures with multiple transition phases.

The timeline shown in figure 8 shows the end effector snare capture sequence. This sequence is
illustrated within the state diagram in figure 6. The corresponding state nodes are shown in bold circles.
The snare system is initially in the static state of "open." The "closing" state lasts 1-2 seconds and the
"captured" state lasts about a second. The final static state is "closed." The boundaries between the
timeline bars are equivalent to the epsilon edges of the state diagram.

Snare Capture Sequence

closing captured

open N_ / closed

01 23 45678

IIIIIIIIII1.
Figure 8. Snare capture sequence timeline.

Figure 9 shows the complete end effector capture sequence of which the snare capture of figure 8 is the
first part. Also shown are the two rigidizing steps and the final state of "closed and rigid." The end states
of the timeline are static or steady states, wNle transition states are depicted within specific time intervals.

Complete End Effector

Capture Sequence

open closing closed
and (snare rigidizing 1 rigidizing2 and

0 1 2 3 4 5 6 7 8 9 10111213141516171819 20

Illllllllllll II IIIlllll.

Figure 9. Complete end effector capture sequence timeline.

An extension of the timeline tool might include labeling of data changes at bar transitions. Basically, it is
up to the developer to get the most out of a tool like this or the state diagram tool. In DESSY, both were
used, as well as other means of representing the system to enable the team to gain a more thorough

19

understandingof thesystemandits operations.As withstatediagrams,this tool shouldbeexploitedto
thefullestextentto aid thedeveloperin understandingthephysicalsystem.

2.3.4 Creating a Storyboard

A storyboard captures the types of information that the intelligent system will display and the types of
interaction between the intelligent system and the human user (Schreckenghost, 1990). It is also the
forerunner of the user interface. Once data has been identified and operations understood, work on
creating the storyboard can begin. This will include sketches of displays and information about how the
human would interact with and interpret these displays. A "story" can be constructed illustrating how the
human would interact with the intelligent system in a sample scenario. Initially, sample scenarios should
address normal operations, but can later be extended to include failures. These scenarios can also be
used when developing test cases (see section 6.3).

The storyboard is useful in working out information requirements with the user. This technique can be
used to distinguish requirements for functions needed to do the task, from requirements about
presentation. For example, two telemetry values may need to be compared over a specified time--a
functionality requirement. The means of comparison might be using overlaid plots--a presentation
requirement. Both types of requirements should be specified.

Once in place, the intelligent system will change operations. Another use for storyboards is in stepping
through typical operational situations to test how well the user can respond to these situations using the
new system. This approach helps in assessing operational changes and in preventing adverse changes
(e.g., changes that increase workload or cause loss of needed information). Adjustments can made to
intelligent system requirements or possibly to operational procedures.

Storyboards are often created using simple drawing and word processing programs, although they might
be sketched by hand or developed in the selected prototyping tool. The storyboard will serve as a
template for later design and development, but it is unlikely that the final design will closely reflect details
found in the initial storyboard. They are, however, very effective for conveying working ideas to other
members of the development team. Use this tool to capture early design ideas, but remain open to
change as the design evolves.

2.3.5 Failure Space

Understanding the failure space of the hardware system to be monitored may be the most difficult part of
the development tasks. Although, as stated in section 1, the authors believe a real-time monitoring system
is not usually a failure diagnostics system, there is still status monitoring that must be done and the overall
health of the system must be determined. In the DESSY project, the scope of failure detection was
limited to status information that could be determined from telemetry data. This would not include, for
example, information heard over voice loops. Even with this definition, mapping out the failure space
was challenging. It can be difficult to find all relevent data for failures you want to include and justify
the elimination of failures that are beyond the scope of the system.

There are, however, some standard types of failure that may be included in real-time monitoring systems.
Each of these types is presented in the following subsections.

2.3.5.1 Transition Timing

Once state diagrams and procedural timelines are complete, the developer will know the length of time
the system normally spends in each state. Thus a feature that should be implemented in the monitoring
system is a mechanism for timing the procedural operations. In the DESSY project, we implemented a
stopwatch-like timer. It can be started, stopped, paused, reset, and resumed. DESSY timers monitor all
significant procedural activities.

Once a procedure begins, the appropriate DESSY timer is started. If the procedure (or procedure
segment) completes within the allotted time, a nominal time will be reported by the timer. This nominal
time has been preset in the timer or is determined by expert system rules. It is usually a range rather than
a single number. If, however, the procedure spends more time in a transition state than is known to be

20

allowed,ananomalycanbeflagged. In theMPM/MRLsubsystemtherewereactuallyseveraltimesof
interestperprocedure.Becausetwo redundantmotorsdriveboththeMPMsandMRLs,therecouldbea
nominaltime if both motors worked properly, a "single-motor-drive" time if one motor failed, or a "two-
phase-motor-drive" time if one motor worked nominally and the other functioned in a degraded state.

In addition to obtaining transition times, the developer must consider how to flag a transition failing to
start or end. Both these actions involve using information available in the timer. When appropriate data,
often command or motor activity, indicates a transition is taking place, the timer is started. If after some
time period, however, the data reflecting positional indicators do not respond, a failure to begin the
transition has occurred and can be declared. Because sets of data do not always change simultaneously, it
is necessary to include a "subtransition" period from a static state to a transition state, i.e., a second or two
to allow the transition to take place. This was not modeled in the state diagrams, but in the real system
must be considered.

Finally, just as the monitoring system must watch for the failure of a transition to occur, it must also flag a
system being stuck in a transition state. This is not straightforward, because unlike a transition ending
marked by changing data, a transition that falls to end has no data indication, but rather a lack of
indication. In this case, the timer must flag that the transition did not end. Specifically, a timeout limit is
identified. If the timer should reach the timeout limit, a failure has occurred.

Figure 10 summarizes the type of events that should be timed. Each timing indication leads to a different
status result (including nominal). Note that each status actually corresponds to a time range, and the
labels show the maximum time for that status. Each timing space shown below is covered by a different
rule, and all possible time ranges are covered.

stowing failed

to begin

1
MPM Stowing Status Times

nominal
stow tln_

slngle-pha_, on one single motor
mot(x stow time stow time stowing failed

0 4 8 12 16 2024 28 3236404448 52 5660 64 68 72

IIII IIIIII II I IIII I I1.

Figure 10. MPM stowing timeline with transition timing.

2.3.5.2 Data Questionable On/Off--Ramifications to the System

Another type of status a real-time expert system should detect is a data value known to be in an incorrect
state. DESSY flags a data value as "questionable-on" if it is active when it is expected to be inactive
(according to other system information). Likewise, a data value that is inactive when it is expected to be
active is flagged as "questionable-off." The method of detecting the questionable-on/off data status varies
significantly depending on the type of data. Some parameters that are used to identify questionable data
are system state, other redundant sensors, and expected transition activities.

Note that the descriptor "questionable" is used to mark suspect data. This is because the data may or may
not represent a known failure, and the expert system (and human) may not have the necessary
information to conclude a failure. The flagging of data as questionable-on/off in fact is usually the first
step for any further DESSY status conclusions. The questionable flag allows DESSY to alert the user that
something in not nominal without making any uncertain failure conclusions.

Once the data has been marked as questionable, however, further rules may process this information to
make conclusions about the data and its ramifications on the hardware system. For examPle, it may be

21

determinedthat the questionable-on value indicates a "stuck on" microswitch. If the appropriate
information is available, the status can be upgraded.

A second use for the questionable data status feeds into the diagnostic rules, giving them a less certain or
definitive nature. For example, in the MPM system a certain active deploy microswitch would inhibit one
of the redundant motors from stowing, causing a single-motor stow to occur, should stowing be
commanded. If the microswitch has been given a questionable-on status, a system status of expect-single-
motor-stow (as opposed to single-motor-stow) is provided. This strategy allows DESSY to present suspect
anomalies to the user without taking the risk of giving the user faulty conclusions. Once additional
information is available and the motor inhibit is confirmed by other data, the system message can be
upgraded to single-motor-stow.

2.3.5.3 Failure of Data to Change During an Expected Transition

A third type of failure the expert system should monitor is failures during transitions. Given an expected
operation, the human and expert system should know a priori the set of data that will change. If any
subset of this data does not change at the expected time, an anomaly is obvious. The expert system must
have status rules capable of identifying appropriate pieces or sets of data that do not change when
expected and flag that data at the time of transition. This includes, but is not limited to, failures detected
through transition timing.

When flagging suspect data, DESSY will usually mark the data as questionable. However, during a
transition the evidence may be strong enough to identify real failures rather than just questionable
situations. Depending on the specifics of the scenario, the developer may be able to conclude immediate
status information at this time.

An example of "failure of data to change" may occur at the beginning of an MPM stowing operation. At
this time two stow opstats indicating motor activity will become active, and the two stow microswitches
indicating stow position will go inactive. A stow command indicator is also available. Thus for this
particular transition, there are five pieces of telemetry which directly and jointly indicate the operation
initiation. If any one (or more than one) of these five pieces of data does not act as expected, an
anomaly can be flagged.

To conclude, the system developer must identify the entire set of data that indicates a transition and
consider the possibility of each piece (or subset) of data in the set not responding. Each piece and subset
identified will likely require a separate status rule.

2.3.5.4 Multiple Data Values Active, Indicating Conflicting States

A final type of anomaly that the intelligent system should identify is that of data values indicating
conflicting states, i.e., an impossible configuration. These anomalies are flagged when the system is static
and no operational activity is expected to occur. They are discovered either by observing that two
conflicting data values are simultaneously active, in which case they might both be marked as
questionable-on; or for a more sophisticated approach, given that the system is in a known configuration,
the suspect data that conflicts with this configuration can be marked as questionable-on and possible
further diagnostics performed. This second approach is preferred when possible because it further
isolates the suspect telemetry.

An example of this type of failure occurs when the MPM system is in the stowed configuration, and a
single deploy microswitch turns active. This conflicting deploy microswitch would be marked as
questionable-on. Alternatively, a single stow microswitch becoming inactive would be marked as
questionable-off. Another example occurs when the end effector snare is known to be open, and with no
procedural operations the close microswitch becomes active. The close microswitch is marked as
questionable-on.

The developer and expert must outline all known nominal configurations of the system, and for each
configuration, determine data values from other sensors that would indicate conflicting conditions. Then
for each piece of data or subset of data, a separate diagnostic rule can be formed.

22

Althoughthis maynotbeanexhaustivesetof failuretypes,theyarethemostcommonandeasily
identified. DESSYdetectsall of thesetypes,andin manycasespassesontheinformationto further
failuredetectionrules.A completelistingof failuresin theDESSYendeffectorexampleis givenin
Appendix A.

2.3.6 Relationships with Other Systems

Finding the relationships between the system being modeled and the outside world can be elusive. The
expert must be thoroughly involved in this step. How the system affects its neighboring systems, both in
nominal and off-nominal operations, as well as how those systems affect it, should both be modeled.
System overlap and dependencies may occur during select normal operations or happen only during
failures. In either case these scenarios may add complexities to the monitoring the system.

Specific examples of overlap between systems include ambiguities of data that belong to multiple
systems. That is, a single piece of telemetry may represent different systems at different times. For
example some opstats that indicate MPM/MRL motor activity can also be active when the KU-band
antenna is being used and there is no current MPM/MRL activity. This is due to a change in
configuration outside the scope of the expert system. Additional data must be used to indicate true
MPM/MRL activity so that the KU-band activity does not falsely indicate this. As another example, if a
logic switch fails or is turned off, subsets of the MPM/MRL opstats will become active, depending upon
the particular switch. Again, it must be assured that this does not incorrectly suggest MPI_UMRL activity.

Thus the developer must be aware that there may be overlaps in the use of certain subsets of telemetry
and design the system to account for them. If this is not done, the result is most likely to be false
conclusions of system activity.

Other issues in dealing with external systems include understanding how failures outside the scope of the
monitored system will affect system performance. An obvious example is a power related failure. If a
failure occurs in the power source to your system, the system will likely be reconfigured to allow for a
redundant power source. The developer must be aware of how this affects the system model. It must
then be determined if accounting for the situation is within the defined scope of the project.

Likewise, the effects that failures in the monitored system have on external systems should be determined.
Although this is stepping into diagnostics, the effects your system will have on the outside world may be
easy to determine in some cases. Again, it must be decided whether accounting for these situations is
within the project scope.

In conclusion, it is important to remember that the relationships between the monitored system and
external systems do exist and must be identified and understood. The expert will play a key role in
identifying this information for the developer. Once these interfaces and interactions have been
identified, the team can decide which are within scope of the expert system project.

2.4 Information Requirements

Information requirements should be well understood so that all necessary information is available to the
development team throughout the development process. Information sources should be identified and
the information sought out before application development begins. The first place from which
information can be extracted is the current user displays. The expert/user can identify additional
information sources used in his or her job. Finally there are some standard information sources in the
aerospace environment that the development team should acquire.

2.4.1 Information from Current Displays

The user's current displays are a crucial source of information because they contain the standard set of
data that the user has available. Understanding the displays and how they are used should be one of the
first joint tasks of the development team. Specifically, the user must identify which data is used for which
subtasks, which is displayed but not used, which is most crucial, and which is most frequently used.
Questions like this will help shape the user interface of the expert system display and will help define the
initial storyboard.

23

As theteamworksto understand how the current displays are used, they must objectively identify both
positive and negative aspects of the displays. Factors might include screen layout and groupings of data,
text vs. graphical representations, and color. Other questions the team might ask are: How is the user
notified when data begins to change; where and how is status information displayed; and how and why
are subsets of data grouped? The human factors team member is responsible for assisting the expert/user
in deriving this information.

2.4.2 User-Requested Information

It is likely that the user makes use of information not found on existing displays. Any additional
information that the intelligent system can provide will further help the user do his or her job and add to
the usefulness of the software. Here the difficulty often lies in identifying this information. Again the
human factors team member has the responsibility to assist the user. Team members must go through the
user's monitoring process to identify the less obvious information on which the user relies. Examples
from DESSY include stopwatch timing and handwritten logs. Having this information available through
the intelligent system further increases the usefulness and credibility of the software.

2.4.3 Gathering of Information

Before the design and development phase of the project begins, all relevant sources of information
should be located. Finding these items ahead of time will make the process more efficient. Below is a list
and brief description of items used in DESSY. The expert/user should assist the team in locating this type
of information.

• Schematics and Drawings----_ovide assistance in understanding the physical system and how failures
occur and propagate. Also may provide telemetry information.

• SDRS--Provides displays with listings of available telemetry including MSID number, label, type, and
location on display.

• Console Handbooks--Provide detailed descriptions of the system, its procedures, and the monitoring
process.

• Current Displays---_ovides a graphic of what is currently used during the monitoring process.

• Failure Modes and Effects Analysis (FMEA) Documents--Provides detailed information about
failures, their causes, and their effects.

• Malfunction Procedures--Provides information on malfunction procedures for failure diagnostics
and recovery.

Once this information is located, it should be made readily available to all team members. Keeping these
documents and all other information related to the expert system in an easy-to-access central location will
make the entire team's job easier.

24

Section 3

Building the System

Once you have completed the preliminary activities of understanding real-time monitoring systems and
determining the requirements for the system you wish to build, you will be ready to move on to the next
phase of the intelligent system project. Section 3 covers both the design and development phases of the
application. The authors have chosen to merge the design and development processes into a single step
because the high level nature of the G2 (or G2-1ike) programming tool supports, and in fact necessitates,
this concept. Object-oriented, graphical development tools support creating the software design within
the tool itself. This leads to development as an extension of existing templates rather than recreating
definitions and objects in a separate development step.

In the DESSY project, the authors found that the design and development phases went hand in hand,
forming an iterative process. The DESSY object structure was designed by creating a definitions class
hierarchy in G2. Once these definitions were created, they were immediately available for use, i.e.
development. It did not make sense to separate object design, definition, and implementation. The
definitions and their object instantiations did frequently change, thus leading to iterative development.

The key concept one must accept to use this section is that this approach is one of iterative refinements of
a single design-development process. This section presents six major steps in the design and
development process. Section 3.1, "Organization of the Knowledge Base," prepares you in the setup of
the architecture of the knowledge base, including grouping of objects, rules, and displays. Section 3.2,
"Object and Structure Design," provides insight into how the physical system should be modeled in
object-oriented programming. Section 3.3, "Rules," is essential reading for developers of real-time
monitoring rules. Rules have been broken into several key categories, and this section provides an
explanation of the use and development of each type. "User Interface Design" is discussed in section 3.4,
and section 3.5 covers issues involved in "Setting Up for Real Time." Finally section 3.6, "Setting Up for
End Users," provides a heads-up on subtle yet key issues involved in preparing the system for end users.

NOTE: Because section 3 covers the development of the knowledge base, it will be more closely related
to the G2 tool than other sections. Many of the examples will be G2 specific. When possible, examples
will be generic enough so that developers using other real-time expert system tools will find the
information useful. However, the focus is on providing help to developers using G2, and in fact
providing many G2-specific tips along the way.

3.1 Organization of the Knowledge Base

A well organized knowledge base will be easier for the development team to understand. The
organization will be iterative, and the developer's willingness to change the organization as the knowledge
base matures will lead to an application that all members of the team can use. This aspect of creating the
intelligent system parallels traditional programming, and the experienced programmer will be familiar
with these concepts. This section covers both module and workspace organization. A module in the G2
application corresponds to a file containing a subset of the knowledge base. A workspace is a work
window within a module on which objects and rules and all other G2 items are placed. It is important for
the knowledge base to be organized at both levels.

3.1.1 Module Organization

Modularization is an important part of knowledge base design, although there is not one right way to
modularize. As the system evolves, changes will be made to the module architecture.

G2 modules are files which contain pieces of the knowledge base. As with traditional programming,
these files dependend upon one another. For example, the lowest level modules contain definitions.
Once these are constructed, object modules can be built which use them. Rules and displays which use
those objects can then be built within higher level modules.

25

If youarejustbeginningto constructthe knowledge base, you will likely start out with all work in a
single module. Once the knowledge base grows, you will "modularize" by splitting it into the appropriate
files. The authors found this to be a tricky task and recommend that you consult the G2 manual
carefully.

Figure 11 shows a simplification of the module hierarchy for DESSY. At the top is dessy-main, which
contains the highest level information. It directly depends on three modules. Interface contains data-
connection information, dessy-top-level contains rule and object definitions, and dessy-sims contain test
cases. Note that dessy-main is indirectly dependent upon all other modules as well.

The dessy-top-level module uses the MPM and MRL definitions supplied by mpm-rarl-defs. This module
in turn uses class definitions in dessy-defs. For example, an MPM object definition is found in mpm-mrl-
defs. An MPM class is a child or subclass of the class RMS. The definition for RMS is found in the
dessy-defs module. Therefore the mpra-mrl-defs module depends on the dessy-defs module.

interface

dessy-main]

[] dessy-top-level

I

[mpm-mrl-defs [

I

I dessy-defs [

I

I butt°as]

I dessy-sims !

Figure 11. Simplified DESSY module hierarchy.

Why is it so important to modularize? The primary reasons are tractability and reuse. If the knowledge
base is divided into smaller manageable parts, it will be much easier to add and document changes. The
biggest win in this modular architecture, however, is reuse. Because work has been separated into smaller
parts, the parts have good potential to be reused within the knowledge base or in other applications. The
buttons module was a standard G2-provided module containing button definitions and corresponding
rules that was easily merged into DESSY. Once this module is merged into the low-level dessy-defs,
buttons may be used throughout DESSY.

Modularity also provides an option of software integration or segregation. Figure 12 illustrates how both
DESSY modules can be loaded and run together or how each module can be used separately. A top level
module is created that contains information about which system(s) to load. In the user environment,
there were times when only one DESSY module was needed, and times when both were needed. This
design satisfies both requirements.

26

dessy-main [

ee-module ImP m-mrl-mod

lee-main [

I
ee-module [

mpm-mrl-main

I
mpm-mrl-mod

Figure 12. Multiple system configurations for DESSY.

Another module reuse win for DESSY was in the creation of a separate DESSY training application. The
DESSY tutorial used existing DESSY modules with an additional module layer built around them to
replace the normal interface. Because of the design, the definition and rule modules were easily plugged
in to the tutorial. This provided the benefit that when the rule module was edited for DESSY, the tutorial
automatically received those changes. Modularization was a big time saver in this aspect of the problem.

The only disadvantage that arose due to modularity in DESSY was that it impacted software loading time.
Many small G2 files take longer to load than a single file containing the entire knowledge base. For the
mission control environment, these loading minutes can be crucial. G2 provides a capability for saving
the knowledge base as a single file. Thus modularity may be kept in the development version of your
intelligent system, and the delivered product can be merged into a single file.

3.1.2 Organization within Modules

Workspace organization parallels modular design. The developer should establish a convention for
organizing workspaces within the modules. G2 provides the capability for setting up knowledge base
organization, but does not enforce or even encourage the developer to proceed in this manner. G2 is
global, giving the developer the capability to program with no organizational structure whatsoever.
Because of this lenience, we stress the importance of the developer maintaining self discipline and
developing the knowledge base in a structured, well organized manner.

Because each workspace is assigned to a G2 module, workspace organization occurs within a module. A
parallel organization should be maintained for all modules. First, set up a root workspace with pointers to
all other workspaces--a top-level workspace that allows movement to any other workspace, either directly
or through other workspaces. Figure 13 illustrates this concept.

To implement this concept in G2, create a workspace and name it something like module-name-root.
Then create a definition called "workspace (ws) holder" or something similar. The icon should be
something simple, like a small box. For each new high-level workspace needed, create a ws-holder object
and give it the name of the workspace you want to create. Create a subworkspace for the ws-holder. That
will be your new workspace. These subworkspaces can either be work areas or can hold workspace
holders to other lower level workspaces.

For purposes of best navigating through the system, assign names to only high-level workspaces. This is
due to the way G2 presents workspace names through the Get Workspace* command. Using the G2
"Free Text" works nicely to indicate the name of a workspace. When searching directly for a workspace
using the G2 Inspect, you may search for the ws-holder with the appropriate name, and then go to its
subworkspace. This method provides for well organized tracking and an easy path to workspaces,

27

ROOT

_WS-1 /

['] WS-2 -

["] WS-3 -

['] WS-4_

WS -4

I

•._W S - 3

[']WS-5

[3 WS-6

t,- WS-2

['] WS-7

WS-8

[7 WS-9

IIII1
Figure 13. Conceptual illustration of workspace organization.

Now that the structure for workspace organization have been outlined, the details of segmenting work
into different categories will be covered. Work breakdown begins with subsystems at the module level.
Within modules there is a recommended breakdown as well. Below is a list of workspace categories and
subcategories. The top level items might be the named workspaces listed on the highest level root
workspace. Although an example and suggestions are provided, it is important to remember that the
exact implementation will depend on the structure of your knowledge base.

• Definitions

Object Defs
Display Defs
MSID (data) Defs

• Objects
- Object-type- 1
- Object-type-2
- etc.

• User Interface
- Screen-1
- Screen-2
- etc.

Rules

- Corrective (always on)
- Monitoring (deactivatable)

- State Transition
- Commanding
- Status

* G2 commands will be denoted with Helvetica font.

28

• Relation
- Definitions
- Rules

• Initialization

• Data Interface (MSID)

• Simulations (Testing)

• Documentation

The sample list should give you an idea of how to begin to break down your knowledge base; however, it
is just one implementation tailored to DESSY. In addition, note that this breakdown does not follow
object-oriented programming in the purest sense because the controlling roles, which parallel methods,
have been separated from the objects they manipulate. In true object-oriented programming, objects and
their methods are more closely tied. The approach taken to separate the roles and objects was primarily
for organizational purposes. G2 roles can manipulate multiple objects, leading to complexities in
classifying rules based on their associated objects. The authors found this approach to be effective and
appropriate.

3.2 Object and Structure Design

Good object and structure design is crucial for a well designed expert system. The sections below discuss
the various elements in an object-oriented system. They primarily center on factors in the object
structure itself, but also include relations between objects and object groupings. Most of the discussion
that follows reflects traditional object-oriented methodology; however, G2-specific examples will be
included.

3.2.1 System vs. Subsystem Design

Any hardware system is likely made up of pieces and subpieces and should be modeled accordingly.
This is the case for DESSY. For example, although there is a single MPM system, there are actually four
individual MPMs making up the system--the shoulder, forward, mid, and aft MPM. DESSY has been
implemented such that the MPM state diagram and rules apply to each individual MPM. In addition, an
overview system state diagram has been developed which is dependent not on the telemetry data, but on
appropriate changes of state in all individual MPM state diagrams. Thus when each of the four individual
MPMs moves to a stowed state, the system level MPM reflects the stowed state. This approach allows one
to capture two distinct levels of system monitoring--that of the individual pieces of the system and that of
the system functioning as a whole. More detailed failure tracking is possible since more information is
recorded about the individual MPMs. At the same time, a glance at system state (and status) as a whole is
available.

3.2.2 Object Design

The first step in constructing objects is to develop the initial object structure and hierarchy, including the
system and subsystem hierarchies. Object attributes should be defined, including state, or position, status,
or operational health, and command, if commanding is associated with the operation of the item. In G2,
object attributes might be other objects themselves. For instance, each MRL has two motors and four
microswitch MSIDs. These six items are modeled in DESSY as both attributes of an MILL and objects
themselves. In addition, the motor objects have their own attributes, which include additional MSID
objects. This representation is useful because it closely matches the true system structure.

As you construct the object design, be prepared for system/subsystem cases that seem very similar, but are
subtly different and therefore often need a different approach. To contrast the MRLs, the MPM system
contains four MPMs; however, only the shoulder MPM contains motors. Thus the choice for MPMs was
to place two motor objects within the MPM-system object, rather than in the shoulder MPM where the
motors are physically located. This allowed all MPM objects to remain symmetric. It did, however,
necessitate slightly different reasoning strategies when dealing with MPMs than when dealing with MRLs.

29

It is importantto notethatsometimessystemsseemverysimilar,but theirsubtledifferencesare
manifestedwheriyouattemptto modelthemassoftwareobjects.Figure14illustratestheDESSYdesign
of theMPM systemandMPMs.

A final caution: thedevelopermustunderstandthesubtletiesof thesystemsbeforedecidingonanobject
design.Beconsistent,butdon'tgetboggeddownby systemsimilaritiesthatmaynotbethatsimilarat the
detaillevel. And if theneedarises,bewilling to changeyourobjectdesignto includenewlydiscovered
or understoodinformation.

MPM
MPM

System

attributes attributes

System-State State

System-Status Status

Command Stow MSID's

Motors Deploy MSID's

Timing

Figure 14. Example of the MPM system and MPM object definitions.

3.2.3 Class Hierarchy

As with conventional object-oriented programming, class hierarchy plays a powerful role in expert
system design. G2 is very strong in its ability to reason over class hierarchies, which proved a great
advantage throughout the knowledge base development process. A particularly good illustration is
DESSY's MSID hierarchy. The highest level MSID definition for DESSY is MSID-def. It contains all the
attributes of an MSID. Below it are, for example, end-effector-MSIDs and MPM/MRL-MSIDs. Within
each of these groups are microswitch-MSIDs, opstat-MSIDs, and commanding-MSIDs. In addition there
are power-MSIDs, enable-MSIDs, and switch-indication MSIDs. Within the MPM/MRL-microswitches
there are stow-MSIDs, latch-MSIDs, deploy-MSIDs, and release-MSIDs. The breakdown of various levels
could continue.

The point is that with only minor exception, all these MSID definitions are identical. Each lower level has
inherited exactly the same attribute slots as its parents and other ancestors. Why then this elaborate
breakdown? It reflects a desire to reason about a subclass at any of these levels. In G2 a single rule can
either reason over all MSID-defs or reason only over all microswitch-MSIDs or only the stow-
microswitch-MSIDs. This is a very powerful feature that allows manipulation of only the desired objects.

3O

ThroughoutDESSYdevelopment,theclasshierarchycontinuedto berefinedto allowrulesto reason
overspecificgroupsof objects.Thisled topowerfulyetconciserules. Unfortunately,if youarenot
usingG2,yourtoolmaynothavethisstrongobjectstructure.If thisis thecase,youshouldstudythe
capabilitiesof thetool youhaveandattemptto exploitits objectreasoningcapabilitiesto thefullest
extent.

3.2.4 Inter-Object Structure (Relations)

There are times when you may wish to reason over a group of objects not associated through the class
hierarchy. This may be because your tool does not allow the association, or it may simply be because the
items were not related enough to be defined within the same hierarchy. G2 provides another powerful
way to logically tie two (or more) objects together for reasoning purposes. G2 relations act as pointers
between any G2 objects. The relation is associated with any two classes in the class hierarchy, and then
instantiated between any two instances in those classes. The relation may be a one way pointer or it may
be bidirectional. It may be one-to-one, one-to-many, or many-to-many.

An example of the use of a relation in DESSY is the association of an instance of the timer class with an
instance of the MRL or MPM class. Four RMS timer objects were created to correspond to FWD-MRL,
MID-MRL, AFT-MRL, and the system-MPM objects. A relation was defined which tied an RMS timer to
an RMS object. Once the definition was set up, four rules were written to tie each timer to the appropriate
object. Thus a single timer was associated with each MRL and the MPM system. A rule example is
shown below.

"Initially conclude that FWD-MRL-TIMER is-a-timer-of Forward-MRL."

Creating this link then provided reasoning capabilities such as

"...start the timer that is-a-timer-of the MRL..."

where is-a-timer-of is the actual relation that references the tie. This capability allowed generic timer
rules to be written, rather than creating specific rules for each timer/object pair.

A second example of the use of relations in DESSY is in tying the specific MSIDs to their displays. An
MSID display class was defined. Its icon is a box that is light blue when data is inactive and dark blue
when data becomes active. A bidirectional, one-to-one relation ties each MSID to its appropriate blue
box. Thus it is possible to reference the-msid-of any blue box, or the-msid-display-of any MSID for
which a display is defined. This implementation allowed separation of the user interface and data
handling portions of the intelligent system. It made reasoning over the displays (for user interface
purposes) very simple and concise.

In summary, relations are yet another extremely valuable tool that G2 provides to keep knowledge bases
more concise and therefore more maintainable. Because the concept of relations is very similar to the
concept of pointers, it is likely that whatever tool you are using, there will be some level of this capability
provided. It is another feature that should be exploited to optimize the expert system development
process.

3.2.5 System Variables and Parameters

As you construct objects and associated attributes, you will be defining variables and parameters for the
expert system. In G2 the difference between variables and parameters is that variables may or may not
have a value at any time, i.e., they may be "NULL." Parameters, on the other hand, always have some
value, even if it is the symbol "none." This guide will follow G2's use of these terms. Other systems will
likely have similar concepts.

There are three key attributes associated with the objects that model the hardware system. They are state,
status, and command. These items should be made parameters so that they are always given a value,
rather than being allowed to have a value of NULL. It may be that upon initialization, or at any time for
that matter, the value of one of these attributes is unknown. Assigning the value unknown, or something

31

semanticallyequivalent,to theattributeis analternativeif thatis thecase.Thustheexpertsystemwill
directlyconcludethattheattribute'svalueis unknown,ratherthantheitembeingunknown(NULL)
becausedataand/orotherinformationwasnotavailableto makea conclusion.Thatis, theexpertsystem
knowsthatit doesn'tknow. Thissubtledifferencein approachprovidesthedeveloperwith morecontrol
overexpertsystemconclusions.

Whenis it advisableto usevariables rather than parameters? In DESSY variables are used for the values
of MSID data because it should be clear whether or not the data has been set or whether it is not available.
In this case a value of NULL is quite informative because it is directly tied to the availability of the
telemetry link. In addition, variables are used for items that need to time out. Along with the "NULL"
value, G2 variables have validity intervals that allow the last set value to be good for a given time period.
Variables are used with a time out or validity interval when the value is to be valid for only a specified
number of seconds. For example, MSIDs have an attribute called "flicker." This value is set to true if the
data value has flickered, or repeatedly turned on and off for a few seconds. Flicker is valid for about 4
seconds. Thus if the data has been noisy, a flicker value of true would prevent that data from being used
in diagnostic rules. After the time period is up, flicker is automatically returned to false because the data
is no longer unstable.

Whether object attributes are parameters, variables, or other objects with attributes of their own will
depend on your specific design. Most likely the knowledge base will include all of these. You must
decide which is most appropriate for each individual circumstance using the guidelines provided.

3.2.6 Grouping of Objects

The final area in the discussion of object design is the groupings of objects within the knowledge base.
Because DESSY's display portion has been partitioned from the reasoning portion, most of the real
objects are hidden, while their displays are presented to the user. G2 provides an icon slot for each object
definition, which means that any object can have its display associated directly with that object, rather
than having a separate display object and tying them together with relations. Your implementation will
depend on the design goals of the expert system. If there is some possibility that the front end, or
display, might eventually be replaced or upgraded with another tool, it is advisable to initially separate
objects from display objects. If this is not a design criteria, however, you may wish to take advantage a
G2's "icon-attribute" feature. Keep in mind that while separating display objects from the rest of the
system will create a more segmented and cleaner system, these additional objects could lead to
performance hits. The purpose of your system will be a major factor in this decision.

3.3 Rules

Once preliminary object design is underway, rule construction can begin. This section discusses several
issues relevant to creating a maintainable and robust rule set. It starts with a discussion of the
organization and types of rules within the knowledge base and then discusses some important factors in
writing rules that are robust. Sections are provided on specific categories of rules you will build in the
knowledge base. As you read this section, it is advisable to frequently refer to section 4, "Working with
Real Time Data." It complements section 3.3 by explaining how to make your monitoring system robust
enough to handle real data and its problems.

3.3.1 Organization and Classification

Rules should be well organized for the knowledge base to be maintainable and easily debugged. It is
useful to break rules into categories aligning with workspace organization. The subsections below discuss
additional issues that must be addressed during initial rule development.

32

3.3.1.1Rules versus Procedures

A rule-based system not only includes rules, but uses both rules and procedures as needed. G2 provides
both rule and procedure writing capabilities, as do many expert system development tools. Although the
flexibility of rule sets often makes them the best choice, the sequential nature of procedures makes them
more useful at times. Don't hesitate to include procedures when they are appropriate. Although most
DESSY logic was written using rules, there were times when procedures were either necessary or
appropriate.

The primary use of procedures in DESSY related to timing and the activation and deactivation of sets of
rules. Certain sets of rules apply only to particular situations and require continuous poling for a set of
events. Because leaving these rules on continuously would bog the system down, we used procedures to
turn on, or enable, these rules during the times they were needed, and then turn off, or disable, them once
the situation had passed. An example is diagnostic timing rules that flag an MPM stow or deploy timing
out. These rules are enabled when the stow/deploy begins. If the operation took longer than the allowed
time, these diagnostic rules would fire and indicate the anomaly. Whether the operation is nominal or
contains failures, the rules are disabled once the stow/deploy completes. Thus procedures were used in
monitoring steps that called for control of diagnostic rules.

3.3.1.2 Generic Rules

Generic rules allow fewer rules covering more objects to be written. They reason over classes of objects,
rather than individual object instances. G2 is particularly strong in this area due to its powerful object-
oriented capabilities. As you develop the expert system, you will likely enhance the object hierarchy to
allow for the creation of generic rules that cover precise subclasses of objects. Segments of generic rules,
along with the class hierarchy the rules address, is shown in figure15. The Stow-Microswitch-MSID is a
subclass of the Microswitch-MSID which is a subclass of MSID. Rules can be written for each level.
Developing generic rules will lead to a smaller, more maintainable knowledge base.

Stow

Microswitch Microswitch

MSID MSID

MSID

For every MSID

If the MSID is...

For every Microswitch-MSID

If the Microswitch-MSID is...

For every Stow-Microswitch-MSID

If the Stow-Microswitch-MSID is...

Figure 15. Generic rules used with the class hierarchy.

33

3.3.1.3Rule Categories

Rules should also be broken into appropriate categories according to their functionality.
DESSY includes are

The categories

• State--Rules that use data and existing state information to conclude a new state

• Status--Rules that use data and other scenario information, such as state or command, to
conclude system health

• Command--Rules that use commanding and other relevant data, along with scenario information,
to conclude a command, including a command of none

• Correction--Rules that watch for a precise data pattern, given a state or status that conflicts with
that pattern, and invoke a corrective action to adjust the state or status

• Data Handling--Rules that manipulate raw data

• User Interface--Rules that manipulate a display item on the interface

Categorizing rules leads to more effective management of the knowledge base. It is also necessary to
allow disabling of rule sets. Each of these rule categories is discussed in more detail in the following
sections.

3.3.2 Making Rules Robust

The primary element that separates real-time data monitoring intelligent systems from off-line intelligent
systems is their interaction with continuously changing data. In theory, data changes come in batches
and rules are written based on a snapshot of data in the system at a given time. In reality, there are
numerous "contaminations" of this idealistic scenario. These contaminations include noisy data and lags
in data changes. Their effect is that the idealistic snapshot oriented rules simply don't work or work
poorly. To overcome these problems, rules need to be built to be robust enough to function properly
even in the presence of noisy or lagging data.

The issue of dealing with bad data has been addressed in section 4, Working with Real Time Data. This
section was derived from a paper called "A Monitoring System with Tolerance for Real Time Data
Problems." (Land, 1993) Other particularly relevant work is found in Chandrasenkaran and Punch, 1987,
and Chandrasenkaran and Punch, 1988. Throughout the remainder of this section, the reader should
reference section 4 for techniques in developing rules to withstand the problems of real data.

3.3.3 Initial State and Command Monitoring Rules

Now begins a discussion of building rules in G2. State and command rules will be discussed first,
followed by status rules and finally correction rules. The subsections below explain the necessary steps in
the rule writing process.

3.3.3.1 Developing from State Diagrams

State diagrams allow the development team to obtain a good understanding of the monitored processes
and their states. Before you begin writing state and commanding rules, you will want to have completed
state diagrams. Section 2.3.3.1 provides an in-depth explanation of the construction of state diagrams.
Figure 16 is a state diagram for the MPM system. This example will be used in the following discussion
of the construction of state and command rules.

34

MPM State Diagram

stow-microl = 0

stow-micro2 = 0

deploy-opl = 0

deploy-op2 = 0

DEPLOY

-IN-

TRANSIT

(32 sec)

deploy-micro1 = 1
deploy-micro2 = 1

deploy-opl = 1

deploy-op2 = l

STOWED DEPLOYED

stow-microl = 1

stow-micro2 = 1

stow-op 1 = 1

stow-op2 = 1
stow-cmd = 0

STOW

- IN -

TRANSIT

(32 sec)

deploy-microl = 0

deploy-micro2 = 0

stow-opl = 0

stow-op2 = 0
stow-cmd = 1

Figure 16. The manipulator positioning mechanism state diagram.

3.3.3.2 Identification of Sequence Asymmetry

Before developing the set of rules corresponding to a state diagram, identify procedural symmetry.
Notice in the example in figure 16 that both the stowing and deploying operations use microswitch
(microl and micro2) and opstat (opl and op2) data. The stowing operation has a command (cmd)
indicator, but there is no command indicator for deploying. Small discrepancies such as this are
common in procedural symmetry. Because the data is slightly different, otherwise symmetric rules for
monitoring these operations will be slightly different as well. Except for this discrepancy, however, the
stowing and deploying operations are symmetric.

3.3.3.3 Initial Rule Development

Once state diagrams are defined, you are ready to create initial state and command rules. This discussion
will continue with the example in figure 16 and construct rules for MPM stowing and deploying. A rule
is created for each state transition and each command value. The rules will form a cycle to cover all
transitions. The rule construction that follows will be for a nominal case scenario. It is important to
realize that these rules are simplified versions of actual DESSY rules. They are a first cut, and working

DESSY rules are in many cases much more complex. These complexities will be addressed in later
sections. The rules have been consecutively numbered for clarity. Curly braces { } denote comments.
Notice that there are both MPM rules and MPM-system rules (see figure 14) and that these two sets of
rules interact with one another.

35

State Change Rules: Stowed --> Deploy-in-Transit

Rule #1
MPM

If the state of the MPM is Stowed
and stow-microswitch-1 = 0 {becomes inactive}
and stow-microswitch-2 = 0 {becomes inactive}
and the command of MPM-System is deploy {determined from opstats}
Then conclude that the state of the MPM is Deploy-in-Transit

Rule #2
_ate of MPM-System is Stowed
and Shld-MPM is Deploy-in-Transit
and Fwd-MPM is Deploy-in-Transit
and Mid-MPM is Deploy-in-Transit
and Aft-MPM is Deploy-in-Transit
Then conclude that the state of MPM-System is Deploy-in-Transit
and conclude that the status of MPM-timer is Start

State Change Rules: Deploy-in-Transit --> Deployed

Rule #3
MPM

If the state of the MPM is Deploy-in-Transit
and deploy°microswitch-1 = 1 {becomes active}
and deploy-microswitch-2 = 1 {becomes active}
and the command of MPM-System is none {determined from opstats}
Then conclude that the state of the MPM is Deployed

Rule #4
IF_5"_'_ate of MPM-System is Deploy-in-Transit
and Shld-MPM is Deployed
and Fwd-MPM is Deployed
and Mid-MPM is Deployed
and Aft-MPM is Deployed
Then conclude that the state of MPM-System is Deployed
and conclude that the command of MPM-System is none
and conclude that the status of MPM-timer is Off

State Change Rules: Deployed --> Stow-in-Transit

Rule #5
MPM

If the state of the MPM is Deployed
and deploy-microswitch-1 = 0 {becomes inactive}
and deploy-microswitch-2 = 0 {becomes inactive}
and the command of MPM-System is stow {determined from opstats}
Then conclude that the state of the MPM is Stow-in-Transit

Rule #6
lFtl_'_'_ate of MPM-System is Deployed
and Shld-MPM is Stow-in-Transit
and Fwd-MPM is Stow-in-Transit
and Mid-MPM is Stow-in-Transit
and Aft-MPM is Stow-in-Transit
Then conclude that the state of MPM-System is Stow-in-Transit
and conclude that the status of MPM-timer is Start

36

State Change Rules: Stow-in-Transit --> Stowed

Rule #7
MPM

If the state of the MPM is Stow-in-Transit
and stow-microswitch-1 = 1 {becomes active}
and stow-microswitch-2 = 1 {becomes active}
and the command of MPM-System is none {determined from opstats}
Then conclude that the state of the MPM is Stowed

Rule #8
]l_"6-_ate of MPM-System is Stow-in-Transit
and Shld-MPM is Stowed
and Fwd-MPM is Stowed
and Mid-MPM is Stowed
and Aft-MPM is Stowed
Then conclude that the command of MPM-System is none
and conclude that the state of MPM-System is Stowed
and conclude that the status of MPM-timer is Off

Command Rule: Deploy

Rule #9
_mmand of MPM-System is not deploy
and the state of the MPM-System is not deployed
and deploy-opstat-1 = 0 {becomes active}
and deploy-opstat-2 = 0 {becomes active}
Then conclude that the command of MPM-System is Deploy

Command Rule: Stow

Rule #10
It the command of MPM-System is not stow
and the state of MPM-System is not stowed
and stow-opstat-1 = 0 {becomes active}
and stow-opstat-2 = 0 {becomes active}
and stow-command-indicator = 1 {becomes active}
Then conclude that the command of MPM-System is Stow

Again, the above examples are simplified versions of the rules that are in DESSY. Although they are
logically correct, they may not function well when faced with less than perfect data or if failures occur.
The following sections elaborate on how the final rules are evolved.

3.3.3.4 Considering Redundancy in Rule Development

Once the initial state and command rules have been developed, the task of writing real, more robust rules
can be addressed. The above rules work well in an idealistic scenario, but would not hold up under noisy
data or under even a minor system anomaly. Section 4.3.2, "Context-Sensitive Bounded Pattern
Recognition," is particularly relevant to the following discussion.

First note that each rule that references this type of data has two redundant microswitches and opstats.
Because of this redundancy, there exists a flexibility in testing for the data change. An or statement,
rather than an and statement, can be used for each of these data changes. This allows the system to
monitor state or command changes even if a single piece of data fails or does not respond. This case
may occur due to a single sensor failure, or it may result from bad data. Note that the or is no.._!texclusive;
thus either one or both microswitches becoming active causes the condition to be true.

3?

Thus,for example,thestatechangeStowed-->Deploy-in-Transitrule becomes
Rule #1 i
For each MPM
If the State of the MPM is Stowed
and (stow-microswitch-1 = 0 {becomes inactive}

or stow-microswitch-2 = 0 {becomes inactive})
and the command of MPM-System is deploy {determined from opstats}
Then conclude that the state of the MPM is Deploy-in-Transit

The Deploy command rule becomes

Rule #12

If the command of MPM-System is not deploy
and the state of MPM-System is not deployed
and (deploy-opstat-1 = 0 {becomes active}

or deploy-opstat-2 = 0 {becomes active})
Then conclude that the command of MPM-System is Deploy

If the two redundant pieces of data were the only data available for the rule conclusion, we would likely
require both to respond before a conclusion is made. However, since there is other information
supporting each rule (such as state and current command), one of the redundant data pieces is enough to
make the conclusion.

One additional piece of information can be included in these rules. Because these rules may fire based
on one redundant sensor, the sensor should be checked to make sure it is indeed functional, that is, not
previously failed. Suspect sensors will have been marked as questionable-on or questionable-off. Thus
the Stow-to-Deploy-in-Transit rule changes as follows.

Rule # 13
For each MPM
If the state of the MPM is Stowed
and ((stow-microswitch-1 = 0 {becomes inactive}

and the status of stow-microswitch-1 is not questionable-off)
or (stow-microswitch-2 = 0 {becomes inactive}

and the status of stow-microswitch-2 is not questionable-off))
and the command of MPM-System is deploy {determined from opstats}
Then conclude that the state of the MPM is Deploy-in-Transit

Writing rules in this manner allows the expert system to continue monitoring in the event that a single
failure occurs or a single piece of data lags in its change; however, it also accounts for previous known
sensor failures. Because other data indicates that the system is proceeding in its expected path, the expert
system follows the new configuration.

3.3.4 Status Monitoring Rules

There are many types of status monitoring rules. The developer should begin status rule development by
identifying failures of which detection is straightforward. Primary categories of status rules have been
identified in Section 2.3.5, "Failure Space." Examples are provided for each of these areas.

3.3.4.1 Transition Timing

A set of rules will cover transition timing for each transition state in the state diagram. These include
nominal transition, off-nominal successful transitions, and failed transitions. Examples for the MPM
system deploy operation are provided below. Each rule uses a transit-time value which is determined by
the timer. The state change rules in the previous section set the timer to start in rules indicating the
beginning of a transition and to off in rules indicating a transition ending. Details of event timing are
discussed later. For now assume that transit-time is properly set.

38

MPM NominalMotorDeploy
Rule #14
Whenever the transit-time of MPM-System receives a value
and when the value of the transit-time of MPM-System > 0 seconds
and the value of the transit-time of MPM-System < 36 seconds
and the system-state of MPM-System is deployed
Then conclude that the deploy-system-status of MPM-System is nominal-deploy

MPM Nominal and Two Phase Motor Deploy

Rule #15
Whenever the transit-time of MPM-System receives a value
and when the value of the transit-time of MPM-System >= 36 seconds
and the value of the transit-time of MPM-System <= 40 seconds
and the system-state of MPM-System is deployed
Then conclude that the deploy-system-status of MPM-System is nominal-and-two-phase-
motor-deploy

MPM Single Motor Deploy

Rule #16
Whenever the transit-time of MPM-System receives a value
and when the value of the transit-time of MPM-System > 40 seconds
and the value of the transit-time of MPM-System <= 72 seconds
and the system-state of MPM-System is stowed
Then conclude that the stow-system-status of MPM-System is single-motor-stow

MPM Deploy Failed

Rule #17
tor any mpm M
if the state of M is deploy-in-transit
and the system-state of MPM-System is deploy-in-transit
and the command of MPM-System is deploy {the motors are on}
and (the status of MPM-timer is on and the timer-count of mpm-timer > 72 seconds {note that
transit-time is not set}
and deploy-microswitch-1 = 0 {is inactive}
and deploy-microswitch-2 = 0 {is inactive}
and the deploy-status of M is not failed-due-to-deploy-indicators-failure
Then conclude that the deploy-status of M is failed-due-to-deploy-indicators-failure

Note that these timing rules cover the full range of possible time values. The last rule is slightly different
in that the failure is concluded at the individual MPM level rather than at the MPM system level. This is
because if the failure is due to a pair of deploy microswitches failing to close, the single MPM with the
anomaly can be identified. If all MPMs obtain this failure status, the failure is propagated to the MPM
system with another rule.

3.3.4.2 Data Questionable On/OffuRamifications to the System

The next type of status rules are those that identify individual pieces of data as questionable-on and
questionable-off. These rules may be as simple as detecting a single piece of conflicting data in a set, or
they may be complex and involve a series of events taking place.

The value of these rules is twofold. First the user is made aware of suspect sensors. DESSY flags suspect
data by placing a yellow border around the sensor display. Second, a value of questionable-on/off can be
used in other rules to predict off-nominal behavior, prevent a faulty sensor from causing a state
monitoring rule to incorrectly fire, or provide further diagnostics.

39

Rule #18
For anystow-msid S
if S = 1 {active}
and the value of S as of 1 second ago = 1
and the command of MPM-System is deploy
and the system-state of MPM-System is deploy-in-transit
and the value of the system-state of MPM-System as of 2 seconds ago is deploy-in-transit
Then conclude that the status of S is questionable-on

Rule #18 flags the failure to lose a stow microswitch when a deploy is initiated. Recall that it takes the
loss of only one microswitch to conclude deploy-in-transit for each MPM. Also note that a delay has
been added to ensure that the microswitch is stuck on, rather than just slow to change. The rnicroswitch is
marked questionable-on.

Rule #19
For any stow-msid S
whenever S receives a value
and when S = 1
and the system-state of MPM-System is deployed
Then conclude that the status of S is questionable-on

Rule #19 flags a stow microswitch becoming active when the system is in a static state of deployed and no
microswitch activity is expected. The microswitch is marked questionable-on.

Rule #20
For any stow-msid S
if S=0

and the value of S as of 1 second ago = 0
and the value of S as of 2 seconds ago = 0
and the value of S as of 3 seconds ago = 0
and the system-state of MPM-System is stowed
and the system-state of MPM-System as of 1 second ago is stowed
and the system-state of MPM-System as of 2 seconds ago is stowed
and the system-state of MPM-System as of 3 seconds ago is stowed
Then conclude that the status of S is questionable-off

Rule #20 flags a stow microswitch becoming inactive when the system is in a static state of stowed and no
microswitch activity is expected. The delay of 3 seconds is necessary to ensure that the system is indeed
static and a deploy has not been initiated. Removing the delay would cause the rule to fire,
inappropriately, at the beginning of a deploy procedure. The microswitch is marked questionable-off.

Rule #21
For any stow-msid S
whenever S receives a value
and when S = 0
and the system-state of MPM-System-Port is stowed
and the command of MPM-System-Port is none
and the power of MPM-System-Port is unpowered
Then conclude that the status of S is questionable-off

Rule #2 1 flags a stow microswitch becoming inactive when the system is in a static state of stowed and no
microswitch activity is expected. It does not require a delay because other information is provided to
ensure that a deploy has not been initiated. The microswitch is marked questionable-off.

The four rules above are examples of how data is marked as questionable-on and questionable-off in
DESSY. Other expert systems will have rules which differ from those above; however, these types of rules
should be written for any data monitoring expert system.

40

3.3.4.3 Failure of Data to Change During an Expected Transition

Throughout the monitoring process, there will be times of expected data change. This often occurs when
the start of some event has been signaled by command data. When a command is detected (provided it is
not a faulty indication), there is a known set of data that is expected to change. The rule below provides
an example of this scenario where commanding initiates a deploy sequence, but the stow indicators are
not lost as expected. In reality, because transitions take time to start, DESSY waits for 4 seconds of
commanding to give the data time to change before it concludes it has failed to change. Also because the
command rule caused the timer to initiate, it is reset to zero if the following rule fires.

Rule #22
It the state of any mpm M is stowed
and the deploy-status of M is not deploy-failed-to-initiate
and the command of MPM-System-Port is deploy
and the value of the command of MPM-System as of 1 second ago is deploy
and the value of the command of MPM-System as of 2 seconds ago is deploy
and the value of the command of MPM-System as of 3 seconds ago is deploy
and the value of the command of MPM-System as of 4 seconds ago is deploy
and the stow-microswitch-1 of M = 1
and the stow-microswitch-2 of M = 1
Then conclude that the deploy-status of M is deploy-failed-to-initiate
and conclude that the timer-count of repro-timer = 0

3.3.4.4 Multiple Data Values Active, Indicating Conflicting States

Multiple active data that indicate conflicting states is another easily detected anomaly. Although these
data will be marked questionable-on, and in fact the example shown is a repeat of Rule #19 from section
3.3.4.2, it is important to take this alternative view to ensure all conflicting data cases are identified.

Rule #23
For any stow-msid S
whenever S receives a value
and when S = 1
and the system-state of MPM-System is deployed
Then conclude that the status of S is questionable-on

In the above example, because the MPM-System is deployed, a stow microswitch becoming active clearly
indicates conflicting data. Other data conflicts, such as an active deploy microswitch for a stowed MPM
state, should also be identified by expert system rules.

3.3.5 Correction Rules

Correction rules are fundamental to the authors' philosophy of building expert systems. Their very
existence is based on the premise that the expert system will eventually make a mistake or omission. This
could be the result of faulty logic; however, it is more likely due to noisy data or periods where data
drops out. In DESSY, correction rules have been used extensively and have prevented disaster on several
occasions. Section 4.3.3, "Graceful Recovery," provides another view of this development technique.

Below are several examples of correction rules, each covering a different aspect of DESSY monitoring.
The nature of each rule is described.

Rule #24
It the system-state of MPM-System is not deployed
and the system-state of MPM-System is not stow-in-transit
and the system-state of MPM-System is not deploy-in-transit
and the state of shld-mpm is deployed
and the state of fwd-mpm is deployed
and the state of mid-mpm is deployed
and the state of aft-mpm is deployed
Then conclude that the system-state of MPM-System is deployed

41

Rule #24 corrects the situation in which all individual MPMs have a state of deployed; however, the
MPM-System does not have a state of deployed. Although this situation is unlikely, it might occur
because of a data drop-out or because of a lack of machine performance, i.e., hardware problems.

A side effect of this rule is that it can be used to correctly initialize the expert system upon start-up.
When the system is first turned on, the state is unknown. If the data indicates that the MPM is deployed,
the individual MPMs will first obtain the state of deployed, and this rule in turn will set the MPM system
to deployed. Rules like this should be written for all known stationary positions.

Rule #25

If the system-state of MPM-System is not deployed
and the system-state of MPM-System is not deploy-in-transit
and the system-state of MPM-System is not stow-in-transit
and (the count of each deploy-msid D such that (D = 1) > 6)
Then conclude that the system-state of MPM-System is deployed

Rule #25 is similar to rule #24, but takes a slightly different approach. It sets the MPM system to deploy,
but uses the fact that there are more than six (out of a possible eight) deploy microswitches active. It may
also be used to initialize the system. The rule allows for either (1) one of the four MPMs not being
deployed, or (2) one or two or the four MPMs having a questionable-off deploy microswitch. Note that
the rule depends on the expert's knowledge that in these cases the MPM system would still be considered
deployed.

Rule #26
It the command of MPM-System is deploy
and (the deploy-sys-a-contact of MPM-Switch is open and the deploy-sys-b-contact of

MPM-Switch is open)
Then conclude that the command of MPM-System is none

Rule #26 removes an MPM deploy command if both deploy-contacts, directly determined by opstat
telemetry, are open or inactive. Whether or not the command was expected and/or desired, once the
opstat command telemetry becomes inactive, this rule removes the command inference from the expert
system.

Rule #27
For any MPM M
if the state of M is deploy-in-transit
and the status of M is deploy-failed-to-initiate
Then conclude that the status of M is operational

Rule #27 provides an example of resetting a failure conclusion that is no longer valid. In this scenario,
the status of the MPM is deploy-failed-to-initiate; however, the state is deploy-in-transit, invalidating the
status conclusion. This situation would occur if the deploy had initially failed, but later had successfully
started. This rule resets the status to operational. The temporary failure can be recorded.

Rule #28
For any MSID M
if the status of M is questionable-on
and the value of M is inactive
Then conclude that the status of M is functional

Rule #29
For any MSID M
if the status of M is questionable-off
and the value of M is active
Then conclude that the status of M is functional

Rules #28 and #29 adjust the status of a questionable MSID, once it retums to normal. If an MSID is
questionable-on, but becomes inactive, the questionable-on status is no longer valid. In the same way, if
an MSID is questionable-off and becomes active, the status is updated to functional. Other corrective

42

rulesmayadjusthigherlevelstatusconclusionsbasedon theseMSIDstatusupdates.Theanomaliesare
recorded.

Correctiverulesareanextremelyimportantpartof a real-timeexpertsystembecausetheyprovidethe
systema gracefulrecoverymechanismif a faultyconclusionwasmadeor if thefailureobservedwas
intermittent.Unlikemonitoringrules,correctionrulesshouldalwaysremainactivesincetheyarevalid
underall circumstances,evenin thefaceof noisydata. Correctiverolesmightbethoughtof asthe
axiomsof theexpertsystem.Forfurtherinformationonwritingrulesdealingwithnoisydata,seeLand,
1992,andLand,1993.

3.4 Event Timing
Everyexpertsystemthatmonitorsreal-timeoperationswill needatimingmechanism.In theDESSY
project,arobusttimerwasdevelopedthatisavailablethroughtheControlCenterLibraryfor Application
ReuseandExchange(CLARE,1994)andcaneasilybe implementedintootherexpertsystems.This
guideprovidesanoverviewof timerfunctionalityandaddresseswritingrulesto monitoreventsand
providetiming-relateddiagnostics.

3.4.1 The DESSY Timer

The DESSY timer has four key controls or commands: it can be started, stopped, reset, and resumed.
The functionality of timer is described below. Rules are usually used to send the appropriate command
to the timer.

• Start--Sets the timer to 0 and then starts it

• Stop---Stops the timer at current value

• Reset--Sets the timer to 0

• Resume--Starts the timer without resetting it

The Start and Stop functions represent basic timer functionality. The Reset function allows a timer to be
zeroed out, if desired, after its use. The Resume function was developed because on occasion a pause
occurred in operations, and the paused time was not to be included in the total final time count. For
example, MPM operations are timed only while MPM motors are running; i.e., the transition is actively
occurring, rather than allow the clock to continue ticking even if the motors are temporarily stopped.
One might also choose to time the entire operation, including pauses, with an additional timer.

The timer definition is provided in figure 17. The state of the timer may be on or off, and the status may
be nominal or timed-out. The timer-count is any integer greater than or equal to zero. The timeout-limit
is any integer greater than or equal to one. A set of timer control rules controls most of the timer
mechanism. Only the command is set by external rules, and only the timeout-limit is preset for a given
operation.

When the command receives a value of start or resume, the timer control rules change the state to on. A
state of on in turn causes timer-count to begin increments. If the expert system is connected to real-time
data, the timer-count is calculated from the incrementing mission elapsed time (MET) MSID. If the
expert system is not connected to real-time data, the timer count is calculated from the incrementing
system clock in the computer. For accuracy in timing real-time mission operations, it is advisable to
compute time from the MET (or other downlisted time), rather than the computer's clock, which is subject
to performance problems.

43

TIMER

Notes OK

Name DEMO-TIMER

Command start

State on

Status nominal

Timer-Count 0

Timeout-Limit 32

Figure 17. DESSY timer definition.

As with start and resume, commands of stop or reset cause the timer control rules to change the state, but
this time to off. Timer-count will no longer be incremented and, given that the command was stop,
monitoring rules can then access timer-count based on the occurrence of the timer state change.
Whenever timer-count exceeds the preset timeout-limit, the timer status is automatically changed to
timed-out. This information can then be propagated to diagnostic rules. The full timer implementation,
including detailed descriptions and control rules, can be found in the Control Center Library for
Application Reuse and Exchange (CLARE, 1994).

3.4.2 Timing in DESSY

Below are example rules of the DESSY timer used in MPM operations. They include extensions of Rules
#2 and #4 found in section 3.3.3.3. Keep in mind that your system and specific implementation may
vary significantly.

Rule #30 sets the timer command to start based on the MPM-System being in-transit. The start-time is
also recorded from OI-MET-TIME. Rule #31 sends a stop command to the timer based on the end of
the transition. The stop-time is recorded from OI-MET-TIME and the transit-time is recorded from the
timer-count. Of course, transit-time could also be derived from stop-time through start-time; these values
should be equal.

Rule #30
If the state of MPM-System is Stowed
and Shld-MPM is Deploy-in-Transit
and Fwd-MPM is Deploy-in-Transit
and Mid-MPM is Deploy-in-Transit
and Aft-MPM is Deploy-in-Transit
Then conclude that the state of MPM-System is Deploy-in-Transit
and conclude that the command of MPM-Timer is Start
and conclude that the start-time of MPM-System = OI-MET-TIME

Rule #31
If the state of MPM-System is Deploy-in-Transit
and Shld-MPM is Deployed
and Fwd-MPM is Deployed
and Mid-MPM is Deployed
and Aft-MPM is Deployed

44

Thenconcludethat thestateof MPM-Systemis Deployed
andconcludethatthecommandof MPM-Systemis none
andconcludethat thestop-timeof MPM-System= OI-MET-TIME
andconcludethatthetransit-timeof MPM-System= thetimer-count

of MPM-Timer
andconcludethatthecommandof MPM-TimerisStop

3.4.3 Timing Issues

Even with the timing mechanism provided, there are still several issues to be resolved for the expert
system to successfully time events. The logic of timing events for your system should be carefully
analyzed. Several questions which arose in DESSY event timing are submitted below, along with DESSY's
solution. Keep in mind that your solutions might be quite different.

• Given a changing data set, do you start/stop the timer at the first piece of data changing, or do you
watch for 2,3 pieces?

DESSY usually watches for more than a single piece of data before concluding anything.

• Which type of data should the timer command be based on: opstat (motor) data, command data, or
microswitch data?

DESSY uses opstat data and command data (when available) to determine command. Then the
command inference and microswitch data together determine a state change.

• Should the period after the command is given and before position indicators are lost also be timed?

DESSY uses only one timer for each event; however, there are diagnostic rules that detect if
microswitches fail to be lost after a command has been given for x seconds. An additional timer for
this purpose would be useful.

• If there is a pause in operations, do you time that? do you include it?

DESSY pauses the timer when there is a pause in operations. If it is desired to time pauses also, an
additional timer could be added.

• If operations stop, and are then reversed, what should the timer indicate?

DESSY had a surprise the first time this behavior was observed/ This may or may not be possible in
your system. Here we record the "forward" time, and then restart the timer. Other non-timer rules are
needed to detect this behavior. This timer behavior should really depend on the system and what the
expert would like to see.

• Are the failure detection (time-out) timers the same objects as the operations timers?

DESSY had only one timer per operation. Sets of diagnostic rules were used, with a rule
corresponding to each status-related time indication. However, an alternative approach would be to
create a timer with several time-out limits, each relating to a different timing anomaly category.

In conclusion, keep in mind the many factors that must be considered when developing timing rules.
Writing event timing rules requires close work with the expert. You will want to ask which data is used by
the expert when manually timing events in the current system. Once this is done, you will have to decide
which rules (commanding, state transition) contain timer command control, and how detailed the
diagnostics should be for event timing. The authors encourage you to investigate CLARE to see the latest
information about the DESSY timer.

45

3.5 Quick Test Buttons and Displays

Throughout role development, testing should be done. G2 provides several standard button types which
make simple testing easy. In addition, simulations can be written using G2 procedures. These test
procedures should include both nominal operations and single data point failure operations. Below are
some example test buttons and displays that G2 provides. We focus on how they were used in the
developer's interface rather than the end user's interface. Other software development environments will
likely have similar items.

Action Buttons--Useful for the initiation of some action. Sets of action buttons can change the value
of any variable or parameter. They were found to be the fastest method of implementing very simple
tests. Action buttons can also be used to launch procedures. The were used extensively in DESSY
for starting the simulation procedures.

Radio Buttons--Useful for toggling variables among specified sets of values. Although not as quick
as action buttons, radio buttons provide a very effective way for rapid testing. They are mutually
exclusive and provide for setting a value upon start-up.

• Check Boxes--Useful for setting true/false values. They are similar to radio buttons, but a single
check box acts in an on/off manner to set a value.

Slide Rules--Useful for selecting a value from a range for a variable or parameter. Slide rules also
behave as display devices in G2, changing value when their associated variable or parameter changes
value through another source.

Procedures--Particularly useful for creating simulation scenarios. Procedures were used throughout
DESSY development to create test scenarios. They may contain wait statements which provide
necessary delays for a scenario, allowing data values to be directly set from the test procedures.

Readout Tables--Useful for displaying a value. They are a very quick mechanism for displaying any
G2 variable or parameter value and provide immediate verification that the values are responding as
expected. Although the look of readout tables can not be modified, they are quite adequate for
supplying the information the developer needs to see.

User-Defined Menu Choices--Very useful for associating a set of menu choices with any display
item. A primary use of User-Defined Menu Choices in DESSY was to associate menu choices of
"active" and "inactive" with each MSID display. Thus, the developer could easily set a data value for
testing purposes at any time during development. In addition, a user-defined menu choice might call
a procedure that changes a set of data values or starts a simulation. Although the G2 menu choices
were slightly difficult to use and could be improved, they were valuable because they made data
values accessible. Note that G2 does provide the capability to remove this feature from the end user,
while preserving it for a developer's further testing.

3.6 Setting Up for Real Time

Setting up the expert system to monitor real-time data is a crucial part of expert system development. Up
to this point the system has been self-contained, and testing procedures have been handcrafted to produce
desired results. Real-time data (live or recorded) will provide the system with a new plateau of testing
possibilities, and likely a new level of challenges to go with it.

The first step in setting up for real-time data is to identify the data source(s). DESSY originally used the
Real Time Data Systems (RTDS) data source; however, this data source has recently been replaced by the
Information Sharing Protocol (ISP) data source. The DESSY team's experiences with setting up for the
RTDS data are discussed with a focus on the expert system's behavior towards real time data. See CLARE
for more information about DESSY's data interface.

46

3.6.1 Setting Up the Knowledge Base

The G2 tool provides an interface object and interface code to tie it to real-time data. The DESSY team

was fortunate to obtain both RTDS and ISP data interface objects from their respective organizations
rather than having to develop one. Creating the real-time interface can be a difficult task. When possible,
developers should obtain a predeveloped interface and avoid writing (and likely duplicating) this code.
A data interface should be a standard element in any real-time expert system library. For purposes of
standardization and time savings, it should be developed only once, by a team that thoroughly
understands the data source.

In addition to setting up the data interface, the individual sensors (i.e., MSIDs) in your knowledge base
must be configured to use real-time data. Each instance of a sensor object must have its table filled in
appropriately. This includes the MSID identification number, the telemetry server's name, and other
information about that sensor. Again, the DESSY team obtained the sensor object template from the
authors of RTDS. Figure 18 shows a sensor (MSID) object. See CLARE to find information on the latest
MSID definitions for the currently used real-time data interface.

SHLD-MPM-STOW-MICROSWITCH-1

Options
Notes

Name

Data type
Initial value

Last recorded value

History keeping spec

Validity interval
Data server

Default update interval
Gsi interface name

Gsi variable status

Category
Param name

Param type

Sample number
Cvt type

Status

Flicker

Microswitch value

do forward chain, breadth first backward chain

OK

SHLD-MPM-STOW-MICROSWITCH- 1,

quantity
none
0

keep history w/max age of data pts = 5 sec
indefinite

telemetry-server
13 weeks

rtds-data-server

0

msid

v54x0820e
cal

1

none

functional

false

open

Figure 18. An MSID sensor object.

The final component in setting up the expert system to use real-time data is to obtain the data source
itself. This involves identifying the data source, verifying that the data stream is available to your
machine, and understanding how to connect to and control the real-time test data. The three sources of
real-time data the DESSY project used were live mission data, live Shuttle Mission Simulator (SMS) data,
and recorded data from either of these sources. Although mission and simulation data are valuable
because of their surprise element, prerecorded playback data is the most useful because many failures can
be recorded on a single tape (file) and these failures can be played back at will as the system is corrected
and refined. Section 6, "Testing the System," will provide an explanation on testing with each of these
data sources.

47

Once the knowledge base and data source are ready, the real-time data testing can began. Setting up the
real-time data source is not a trivial task, and you should get help from the data host organization or from
other available help organizations. Details on setting up the data source are beyond the scope of this
guide. The advice to developers is to get help from someone who is experienced in this area. Reuse of
other developers' codes and knowledge will save your development team valuable resources.

3.6.2 Using Real-Time Data

Once the real-time data source and sensor objects have been set up and the data connection has been
established, real-time testing can begin. During this stage of project development, many unknowns will
likely surface and the iterative nature of application development will become apparent. Rules which
performed ideally given ideal data scenarios may now malfunction due to the inpreciseness of real data.
Be prepared for design changes during this step. It is likely you will have to retrace many of the steps in
section 3, and you may even need to revise your understanding of the system and consult section 2
again. However, following the development steps outlined in these sections should minimize knowledge
base changes.

As you begin using real-time data, keep in mind that Section 6, "Testing the System," provides insight
into the testing process. As with any type of testing, nominal cases should be checked first to verify the
system's basic functionality, and then more complex cases, i.e., failure cases, can be addressed. It may
turn out that even in nominal cases the behavior of the data is not ideal. You will need to make sure your
system is robust enough to handle the normal data discrepancies that occur in the operations it monitors.

3.7 Setting Up for End Users

Setting up for end users involves providing the finishing touches that will allow someone unfamiliar with
the expert system to readily use it. This includes instructions on starting up and shutting down the
system. If you are using Motif, you will likely want to allow users to launch the system from a Menu
rather than having them use a command line prompt. You will need to make sure the users' path has
been correctly set for both the G2 (or other) applications and for your expert system and make sure the
display variables are correctly set (assuming you are working in a Unix environment). This may involve
changing the environment on the users' workstation. Since the workstation will likely be running other
applications as well, coordination with other workstation users is necessary.

To help users feel comfortable with the system, a basic instruction sheet should be provided with an
overview of software use. For DESSY color cue cards were created for the MPM/MRL and end effector

systems. A black and white copy of these cue cards is provided in Appendix B of this guide. This type
of overview sheet is common for software applications, and has been useful for DESSY users.

In addition to the cue card, a DESSY tutorial was written in G2 "on top of" the DESSY system. The
tutorial provides detailed explanations of each item on the DESSY screen. The tutorial is discussed in
section 7. It is an important part of preparing the end users to work with the expert system.

In conclusion, the most important element in setting up for end users is to ensure that it is as simple as
possible for users to understand and use your system. Many (possibly most) users do not have
significant software experience and may in fact be uncomfortable with software. You must encourage
them to use the system by making it not only a beneficial, but also a simple task.

48

Section 4

Working with Real-Time Data

A major challenge for intelligent monitoring systems is to handle real-time data robustly. Section 4
addresses problems in and solutions to handling data that is often unpredictable and unreliable. The
principal real-time telemetry data problems that are encountered in the space operations domain include
(1) missing data, (2) erratic or noisy data and (3) data lags and irregularities during state transitions,
commanding, and other operational events. A combination of methods evolved throughout DESSY
development that address these areas include rule disabling, use of context and expectations to make
assessments that tolerate some bad data, and graceful recovery through system correction when reliable
data returns.

When working with real-time data, one must expect the unexpected in data problems. In spite of filtering
and other techniques to keep bad data out of the system, some will always get through. When it does, the
only choice is to design for recovery when things return to normal. Real-time data monitoring systems
that reside in high-risk environments, such as NASA's Mission Control Center, must be built to be robust
enough to handle bad and missing data. Although the specifics of these techniques will differ from one
project to another, the guidelines presented here provide a good set of ground rules from which a robust
system can be built for real-time monitoring.

Section 4.1 covers "Related Work," which gives other approaches to addressing the real-time data
challenges. References are provided. Section 4.2, "Types of Data Problems," explains the cause and
effects of each of the data problems. Section 4.3, "Data Handling Methods," elaborates on the techniques
used in DESSY to build a robust system that could withstand these data problems. Examples of rules and
techniques used in DESSY are provided throughout.

4.1 Related Work

Conventional approaches such as data filtering or data validation may be used to deal with some
unreliable data, but they are often insufficient to eliminate all bad data, and can even introduce data
problems. Even if it were possible to filter out the bad data, the use of unfiltered data is desirable because
it gives the human monitor a better understanding of the telemetry. Human experts routinely tolerate
significant amounts of bad data in monitoring and diagnosis, whether or not it has been preprocessed in
these standard ways.

Statistical approaches to data problems in diagnostic systems (Cooper, 1990, Paasch and Agogino, 1992,
and Wellman, 1990) use sampling and statistical testing techniques or probability estimates. Sampling
and testing approaches, which are forms of preprocessing, may require sample sizes or sensor
redundancies that are not available. Additionally, such approaches are somewhat unreliable and cannot
eliminate all data problems. Probability estimation approaches suffer from tractability problems in cases
where the possible failure space is high, and certainty estimates may be difficult to obtain from the
domain expert. Statistical approaches have proven to be useful in cases that can accommodate their
limitations; however, they remain incomplete because they do not provide for recovery from wrong
conclusions.

Another approach to problem data is to concentrate on diagnosing sensor failures (Scarl, 1987). Once a
sensor failure is diagnosed, the faulty data can be eliminated until the sensor is fixed. This approach
requires sensor redundancy or testing to identify the failures, and shifts the focus from operations
monitoring to sensor diagnosis. DESSY does include a limited amount of faulty sensor identification;
however, the majority of the data problems in telemetry monitoring systems are not due to sensor failures,
but are temporary data noise. Unlike sensor failures, these data problems are both transient and expected
(Shontz, et. al, 1992). While sensor diagnosis may be prudent and useful, it does not address the
telemetry data problems.

A knowledge-based approach to dealing with bad data is to rely on diagnostic expectations and the
preponderance of the data (Chandrasekaran and Punch, 1987). DESSY uses such an approach, basing
conclusions on operational context and expected data patterns. Such an approach provides graceful

49

degradationin thefaceof baddata(Hayes-Roth,et al, 1983), permitting reasonable interim assessments
while eliminating most false conclusions. However, since bad data will inevitably enter the system, a
recovery approach is needed. Recovery should be more graceful than a system restart. A system should
be able to recover by incrementally reinterpreting data as it is gathered (DeCoste, 1991). DESSY uses a
technique its developers have deemed graceful recovery. New data is reevaluated as it enters the system,
and adjustments are made to expert system conclusions based on that data.

The data handling techniques implemented in DESSY have repeatedly proven effective in maintaining
robust expert system operation while tolerating bad data. Disabling rules when data is unreliable mirrors
the human process of ignoring bad data. The pattern recognition approach, similar to that presented by
Chandrasekaran and Punch (1987), allows tolerance in conclusions by considering context and
expectations and by marking data as questionable if discrepancies occur. The DESSY approach differs
from Chandrasekaran; however, in that if the expert system makes a mistake based on bad data, a graceful
recovery mechanism is used. Although each of the techniques presented has merit by itself, it is their
combination that most reflects the human monitoring process leading to a system with a human-like level
of tolerance to data problems.

4.2 Types of Data Problems

The DESSY approach to dealing with unreliable telemetry data is distinctive because of its objective of
achieving human-like tolerance to bad data. Data problems such as loss of data, erratic or noisy data, and
data lags and irregularities are tolerated by monitoring data quality, using diagnostic expectations, and
correcting wrong conclusions when good data returns. The following sections explain each type of data
problem. Section 4.3 provides their DESSY solutions.

4.2.1 Loss of Data

The most common and well understood data problem is a loss of data. Data loss usually takes the form
of a complete loss of signal (LOS) and may be either unexpected or expected, i.e., when the Shuttle
enters the Zone of Exclusion (ZOE) where there is no telemetry downlink. Unexpected data loss may
occur as a complete or partial loss of data, usually due to ground processing or computer hardware
problems.

Although LOS seems like a simple phenomenon to account for, hardware implementation of telemetry
processors can complicate the situation. Depending upon how a particular telemetry processor handles
periods of LOS, the monitoring system may receive an inactive state for all data values, no data values at
all, or a static flame of the last data values. In the case of the DESSY data source, the Real-Time Data
Systems (RTDS), the last 4-5 seconds of data is repeatedly replayed until the signal returns. Yet another
possibility is that nonsense data is received during periods of LOS. The first step in dealing with loss of
data due to signal loss is to find out the form of data that will be received during this time.

The DESSY data source provided a data quality measurement from the telemetry processor from which
LOS could be concluded. OI-Quality indicates the telemetry processor's assessment of data quality for
each data frame. However, OI-Quality does not always reliably reflect true data quality. There is often a
lag between the data quality drop and OI-Quality's reflection of this drop. Even when the lag does not
appear, the low quality indication often occurs in the same data frame that includes bad or missing data,
making it impossible to filter the data or to alert the system of its presence. Inevitably, bad data due to an
LOS periodically enters the system. Methods such as rule disabling and graceful recovery address this
problem.

4.2.2 Erratic Data

Erratic data is unstable and does not meet expected behavior for a given operational context. Erratic data
may occur at any time, but is most likely to be seen immediately before or after LOS or at the time of
state transitions. Erratic data is characterized by frequent flipping of bits On the binary case) in a
particular data set. Bit flipping occurs when a data value toggles or flips between values of 0 and 1. This
signature may also result from intermittent sensor failures, and that possibility should not be ruled out.
For large sets of data, however, it is more likely that any bit flipping is due to bad telemetry data rather
than bad sensors.

50

ForDESSY,periodssurroundinganexpectedLOSarea commontimefor erraticdatato appear.As the
SpaceShuttlemovesin or outof asatellite'srange,thetelemetrylink hasaperiodof degradation,during
which the OI-Quality has not yet dropped. The result is often a significant amount of bad data entering
DESSY. Because there has been no previous low quality indication, DESSY has no indication of the
degraded data. The second situation in which erratic data often occurs is near the beginning and end of a
state transition. This type of erratic data is discussed in the next section. Context-sensitive bounded
pattern recognition and graceful recovery can be used to deal with both types of problems.

4.2.3 Data Lags and Irregularities During Operational Events

The final type of data problem results from unexpected data activity when data is expected to change
because of an operational event such as a state transition or commanding. Data that is expected to
change may flicker or lag before reaching a new stable state. Given a set of data that is expected to
change at transition time T, subsets may flicker or lag, causing the data transition to occur over some
delta time t. Typically delta t is 1 to 3 seconds. Figure 19 depicts five examples of data transitions from
low to high values, including a normal data transition and four anomalous cases. The delta time for this
data set, 2 seconds, is the time it took for every piece of data in the set to change to its new expected
value.

nominal
transition

1 sec delay

2 sec delay

1 sec flicker

1 see flicker

3t = 2 secEvent Start I

-2 -1 0 1 2 3

I

D1

D2

D3

D4

D5

4

Figure 19. Examples of data lags and irregularities.

Data lags and irregularities during operational events may be caused by telemetry noise or by the
physical properties of the hardware being monitored. In either case, there is no smooth transition.
Failing to include this behavior in the system's monitoring rules will often lead to erroneous conclusions.

4.3 Data Handling Methods

Now that the types of data problems experienced by real-time monitoring systems have been explained,
the focus will turn to solving those problems. Table 3 lists the data problems with their applicable
solutions from the DESSY approach. Each method works independently to prevent or correct erroneous
expert system conclusions resulting from bad or missing data, but it is their combination that ensures a
robust program capable of lengthy periods of uninterrupted use in operations. The techniques are
discussed in the following sections.

51

Table 3. Data Problems and Solutions

Data Problem Solution Methods

loss of data rule disabling, graceful recovery

erratic data pattern recognition, graceful recovery

data lags and irregularities during pattern recognition, graceful recovery
operational events

4.3.1 Rule Disabling

The most straightforward method of dealing with data of uncertain quality is to ignore it by not
responding to changes in that data. In any system there will be 0rues when data quality is so low that the
data should not be used at all. The intelligent system should have the capability to ignore data when it is
unreliable, by a method such as disabling rule sets. Modularity within the software (see section 3.1,

• "Organization of the Knowledge Base") separates rules for data monitoring, state transition detection,
• : failure diagnosis, expert system control, and user interface. This partitioning allows the enabling or

disabling of appropriate groups of rules when necessary. Certain diagnostic and state transition rule sets
are disabled in DESSY when the value of OI-Quality is any number other than 100. When quality
returns, the rules are again enabled.

Although this tactic seems simple enough, the quality indicator and its corresponding data are in the same
time frame, making immediate disabling impossible. Also, as the Shuttle enters or leaves the ZOE, the
telemetry link deteriorates, making OI-QuaUty itself unreliable at that time. However, even though
erroneous data may have already entered the system, it is still desirable to disable rules to minimize
further faulty conclusions.

Disabling rules is the simplest of the techniques used in dealing with real-time data problems.
Unfortunately, it effectively eliminates the usefulness of the expert system during the time the rules are
disabled, retaining only its function as a raw data monitoring source. For this reason, the technique is
only used when absolutely necessary--when it is certain that quality is low and data is unreliable.

To supplement automatic rule disabling, the DESSY user may also turn off the expert system portion of
DESSY at any time, leaving DESSY to act as only a data monitor. Actually, this turning off merely grays
out the parts of the DESSY display that present expert system conclusions, allowing DESSY to continue
to work in the background. Section 5.6.3, "Control of the Expert System," elaborates on this concept.
Even if DESSY has made incorrect conclusions and the user has grayed out the expert system part of the
DESSY screen, the built in self-corrective rules should eventually lead to recovery. The intent is that even
if DESSY has been turned off due to erroneous expert system conclusions, it will recover by itself, and
the user will once again be able to use the expert system part of DESSY. Nonetheless, this feature gives
the user the opportunity to override the expert system at the level of the user interface (Malin and
Schreckenghost, 1991).

4.3.2 Context-Sensitive Bounded Pattern Recognition

The second technique implemented to ensure DESSY's robustness deals with characteristics of the sets of
data that DESSY uses to detect events and identify failures. Because of problems with data lags and
irregularities, the expert system often has insufficient or even erroneous evidence from the data set upon
which it can determine the occurrence of an event. Also, because of the nature of space operations, there
is often an insufficient amount of sensor data available, making event determination even more difficult.

52

For example,if theeventis anMPMstow,thereareonly two sensors to indicate the stowed state once the
MPM has reached its new stowed position. This data set is insufficient to determine the stowed state.
DESSY requires that all rules except recovery rules tolerate a single data failure in any set of data
considered. If one of these two pieces of data was active and the other inactive due to a data problem, the
state would be inconclusive. The data must therefore be supplemented with additional information.

When appropriate, context such as the system state or the detection of a prior event is included. When
context is considered in a rule, a context variable (CV) is used. Context variables are simply known
pieces of relevant information. They may be a combination of data and/or information and may be
either G2 variables or parameters. Use of CVs supplements the data set, and some rules use only CVs.
Table 4 gives an example of a DESSY rule using two pieces of data and two CVs. CV use also simplified
the verification process.

Table 4. Rule With Two Pieces of Data and Two Context Variables

DESSY Rule: state transition

If the state of any MPM is stow-in-transit

and (the sysl-stow-microswitch = 1

or the sys2-stow-microswitch =1)

and the command of MPM-SYSTEM is stow

then conclude that the state of the MPM is stowed

Data/CV set

CV

data

data

CV

conclusion

Following are the general guidelines developed in determining necessary data sets and context variables
for DESSY rules. The lower limit or minimum requirements needed to make reliable conclusions is
addressed, followed by a brief discussion on the upper limit or maximum data set recommended.
Establishment of a lower limit is necessary because enough data must be observed to correctly monitor an
event, given that some predetermined amount or percentage of the data set being considered is bad. An
upper limit is established because of the impact the data set size has on computer hardware performance.
An example from DESSY is provided.

4.3.2.1 The Lower Limit

Given an operational event, there exists a set of data S that the intelligent system directly monitors to
determine when the event occurs. In addition, there exists a second, usually larger, set S', a superset of S,
that makes up the context in which the event will occur. Figure 20 depicts this concept. The set S'
indicates state, status, and any other operational context of the system being monitored and includes both
data and CVs. Humans may verbally testify to monitoring S when watching for an event to occur, but in
reality it is the entire context set, S', that the human observes. DESSY attempts this behavior.

Figure 20. Sets of immediate data and additional context.

53

TheCVsfromS' in theexampleof Table 4, which concludes an MPM stow operation, are the current
MPM state and MPM command. Thus we have the following sets.

Sstowed = {sysl-stow-microswitch, sys2-stow-microswitch}

S'stowed = {sys 1-stow-microswitch, sys2-stow-microswitch,

current state, command}

The resulting concept is shown in figure 21.

Figure 21. Example of S and S' for immediate data and additional context.

If the set S were the only data considered, a constraint that both data elements be active would need to be
imposed to eliminate ambiguity and ensure a stowed state had been reached; however, this does not meet
DESSY's requirement to continue to monitor given a single failure. Because context is considered in the
extended set S', the constraints to require only one of the two rnicroswitches to be active in determining
the stowed state can be relaxed. Because the set size of two for S is insufficient for determining the event
given DESSY's requirements, S' offers a more plausible solution.

Even in the case where three pieces of telemetry are available, the data is probably insufficient. Although
in actual operations, a double hardware failure must occur to lose two of the three sensors, in a situation
with noisy data, it is possible that two of these three may erroneously become turned on. In this case, a
larger data set including CVs is desirable. CVs such as state and command in the example above can be
used to obtain the minimum information set by imposing physical constraints or providing the current
system configuration. CVs limit the scope of a rule, and thus limit the chance that it will fire incorrectly
given it has received bad data.

4.3.2.2 The Upper Limit

In real-time operations, every piece of data observed has an associated performance cost. Thus there are
limits on the amount of data DESSY is allowed to inspect in most rules. The best way to implement this is
through context variables which hold summaries of data values and are usually already stored in DESSY
for other purposes. Use of CVs provides constraints limiting the size of inspected data sets. DESSY uses
the upper bound per rule of four pieces of telemetry data or two to three pieces of data given a CV. The
real-time expert system should usually not be overloaded with a larger set, although there will be
exceptions in safety critical or unreliable areas.

4.3.3 Graceful Recovery

Although some expert systems attempt graceful degradation in the face of trouble, DESSY has extended
this concept to one of graceful recovery. If the system makes faulty conclusions because of bad data, a
set of corrective rules act to restore the expert system once good data returns. This includes correction of
individual data, state, and status. The system does not have to be restarted by the user because the
corrections automatically restore offending parts of the knowledge base.

Corrective rules are similar to other system monitoring rules, except that they do not allow for any
inconsistencies in the data sets they observe when making conclusions; i.e., every piece of data in the set
must be exactly correct. Additionally, corrective rules are written only for the cases that it can be

54

determinedwithcertaintythatthesystemis in aparticularconfiguration.Theserules,therefore,canbe
thoughtof astheaxiomsof theexpertsystem.Theycanbeassimpleasdeterminingthatasinglepiece
of datais reliableagainbecauseit returnedto alegitimatevalueafterit hadpreviouslybeendeemed
unreliable.A more sophisticated example is the reevaluation of system state when all microswitch data

for a new state becomes active.

Examples of corrective rules are shown below. The first example shows the reevaluation of the status of a
single microswitch. If the microswitch status is questionable-on because the microswitch is
inappropriately active, and then the microswitch value returns to inactive (0), the status is set to functional.
The second example reevaluates the state of MPMs. If the state is not stowed, but both stow microswitch
indicators become active (1), then the MPM state is set to stowed. Section 3.3.5, "Correction Rules," gives
detailed instructions on the construction of corrective rules and provides further examples.

Corrective Rule: Microswitch Status

If the status of sysl-stow-microswitch is questionable-on
and the sysl-stow-microswitch = 0
then conclude that the status of sysl-stow-microswitch is functional

Corrective Rule: MPM State

If the state of any MPM is not stowed
and the sysl-stow-microswitch = 1
and the sys2-stow-microswitch = 1
then conclude that the state of the MPM is stowed

These correction features have not only been useful, but also have good side effects. Complementing the
correction rules, initialization rules allow DESSY to be started during any stable MPM/MRL configuration
and to be initialized to the proper states and statuses. The MPM state rule shown would initialize MPM
state to stowed if DESSY were started with the MPM in the stowed position. If DESSY is started during
transition periods, once the transition is complete, DESSY can initialize itself. This has been an important
and even necessary DESSY feature.

55

Section 5

Evolving the System through the User Interface

The user interface is the window into the monitoring application and is therefore a crucial part of the
overall system design. It is separate from, yet intricately linked to, the expert system, and should be
recognized as one of the many components that make up the complete system. Like the expert system
part of the application, the user interface is developed iteratively. This section presents some guidelines
for creating this vital application component, starting with "Understanding the User Interface" and
"Preliminary User Interface Design" (sections 5.1 and 5.2). It then discusses "Evolution of the User
Interface" (section 5.3), and provides an application display example in section 5.4, "The DESSY User

Interface." Section 5.5 discusses User Input and Control," or how the user interacts with the intelligent
system during operations. Section 5.6, "Expert System Management.," covers management of data
problems and problems with the expert system itself. Finally, section 5.7, "Developer's Interface,"
addresses those displays which assist the developer throughout the life of the system. (After all, as a
developer of these systems, you are a software user too.)

5.1 Understanding the User Interface

Because the user interface is such an important aspect of the monitoring application, its design should be
carefully thought out before development begins. The user interface is more than just a screen. Early
user interface design will help drive expert system requirements. The following sections explain the
relationship of the user interface to the expert system and define the parts of the interface that establishthis relationship.

5.1.1 The Window into the Expert System

Graphics provide an excellent communication medium, and the user and developer may find this an
effective means for gaining a mutual understanding of both the operations being monitored and the
expert system. The DESSY project started with a storyboard which included the preliminary user
interface and information on the functionality of each interface item. This storyboard served as a basis
for initial interface development and expert system design. Storyboards are discussed in section 2.3.4.

The design of the user interface, like the design of the knowledge base, is iterative and interactive.
Significant changes in the user interface may mean new or revised expert system rules. At each step in
the process, allowing the user to interact with the interface, and thus the intelligence behind it, will
expedite the development process by exposing problems or confirming good ideas. Because the user
interface acts as the window into the system, it is useful not only for identifying user interface issues, but
for disclosing problems hidden in the expert system as well.

In addition to the user interface window, which is designed for the end user, the developer's interface can
function in a parallel manner for the developer. A common mistake in user interface design is assuming
that the user needs access to all displays the developer can access. The developer should construct an
interface, not necessarily available to the user, to allow interaction with the expert system from a
developer's perspective. This concept is discussed in section 5.6.

5.1.2 Layers of the Interface

The user interface of any software application can be broken down into several layers corresponding to
steps in its design. The highest level layer is the information content of the displays. This includes data,
state, and status information to be displayed, as well as any other information relative to the monitored
system. This level of display definition is purely abstract and does not include graphics or behaviordefinitions.

Once the appropriate information to be included in the interface has been identified, the display elements'
appearance and behavior can be established. Icon descriptions such as graphics, color, and size can be
defined for each item of information, and the behavior regulating the icons can be determined. Behavior

includes actions such as color changes and icon changes (e.g., the DESSY end effector snare icon depicts

56

thesnaresin openandclosedpositions).Togethertheappearanceandbehaviormakeup thecomplete
displaydefinitionfor eachinformationalitem,themiddleinterfacelayer.

Finally,thelayerof overallscreendesign can be established by creating a display layout that makes
effective use of individual display items. Almost always, screen "real estate" is an issue; i.e., there will be
only a limited amount of screen space available for the interface. This will likely be a major factor in the
interface design, and it may drive a redesign of individual display elements. Pop-ups, temporary display
windows related to particular screen elements, are a useful mechanism to include relevant, but less
important information in the user interface. Pop-ups lead to navigational issues such as how and where to
pop up, minimizing the distraction from more important screen information.

The three user interface layers described above will be implemented in steps, but as with other expert
system development will be iterative, with each step influencing the outcome of the other two.
Distinguishing among these activities, however, will help lay the foundation for a useful and reliable
expert system user interface.

5.1.3 Elements of the Interface

In addition to identifying the layers that are involved in user interface design, it is helpful to understand
the types of elements present. The four categories of interface displays used in DESSY are text, icons,
graphs and plots, and navigational items. Each is discussed briefly below.

Text displays contain ASCII characters and are found primarily as messages or description boxes.
Messages are useful for logging events, particularly if they require a time stamp or should be recorded in
an event log. Messages are also useful in alerting or warning the user of the occurrence of an event.
Description boxes are used to display the current value in a set of changing information. This includes
parameters such as state (snares are open, closed, opening, closing...), status (snares are nominal, failed-to-
closed...), and time. Both types of text displays can be color-coded and recorded in a file.

Icons are a second type of display item. Icons may be graphical or symbolic. Graphical icons may
contain complex drawings and include motion and color schemes. They have the advantage of more
accurately reflecting a graphical view of some subsystem part. Symbolic icons are simple geometric
shapes, usually having a color to indicate state or status. They are useful because they simplify screen
design, and may be easier for humans to monitor. It may not be possible to say precisely whether an
icon is graphical or symbolic; rather it may fall somewhere in the middle of this spectrum. The question
of which type of icon is better remains unresolved. It will likely depend on the situation, and a mix of
icon types may be the most appropriate.

Graphs and plots are common displays that show trending. Although they are very useful, they require
significant screen space and may be most appropriate as pop-ups. DESSY does not currently contain
graphs or plots; however, this is clue more to limitations of the G2 environment than to their usefulness.
There are, however, several applications for these items within the operations community. See the
CLARE library to locate these applications.

The final type of display item is the navigational item. Although these displays do not show data, they
are an important part of the user interface. The most obvious navigational item is the button. Buttons
can bnng up or hide additional displays, or give the user control over some expert system feature. In
addition to buttons, pull-down menus are very effective in allowing the user to navigate though the expert
system. In G2, any display item can have a menu associated with it. Examples of menu use in DESSY
include going to pop-up displays and resetting the status of an MSID. Both buttons and menus were
found to be very effective in DESSY, not only in the user interface, but in the developer interface as well.

5.2 Preliminary User Interface Design

Before developing the user interface, one must understand the existing displays of the users. This section
provides help in understanding these displays and in tying the displays you design to them. Also covered
is help on getting started in gathering the information elements.

57

5.2.1 Getting Started

For the expert system display to be accepted by end users and have a good chance for success, it should
directly relate to existing displays. For this to happen, the developer must study the existing displays and
their use and determine positive characteristics. The connection of the expert system display to existing
displays might be as simple as having the data arranged the same way or on the same area of the screen.
Although the design should be driven by existing display(s), one should be wary of jeopardizing an
improved display design. Some design compromises may be beneficial in the short run, but the end goal
of improved displays should remain in sight. As the system evolves, additional improvements can occur.

Once you have an understanding of the existing displays, you are ready to begin display development.
Because of the nature of operational prototyping, it is important to begin development soon in the design
process, providing the flexibility to change as the design matures and more information becomes
available. As you construct the initial display, remember to capture all information in current display(s)
that the system will monitor. Because the expert system will perform the human task of monitoring, it is
important to provide the flight controller with all data with which the system makes conclusions. This will
allow the controller to verify the expert system's decisions, and the confidence level in the system can
evolve.

5.2.2 Gathering Information Elements

There are several standard items which seem appropriate for real-time monitoring systems. Items from
the DESSY display which might also be suitable for other expert systems are presented. Figure 22 shows
the original (but not final) MPM/MRL DESSY display. Compare this information to that of figure 23,
the existing RMS console display. This DESSY display contained most of the MPM/MRL data that

existed in the console display, along with its expert-system-supplied information. The original display
concepts served well in providing the ability to understand the operations; however, changes were made
as the system evolved.

Although the original DESSY display design was only preliminary, it helped significantly in identifying
necessary display elements and display layout. Basic information identified for the expert system display
is listed below. Also given are the types of display element used to represent information.

• Raw telemetry data
- simple displays show active/inactive state

• Telemetry "comps"
- simple displays represent two or more pieces of data
- data items have been combined by and or or to represent a single value

• System state and status
- text boxes give concise message
- icons depict real objects when feasible
- pop-ups lead to more detailed information
- color coding indicates problems

• Timing
- timers are located in appropriate screen area

• Event recording
- message log stores and records events

• Generic mission information

- header or panel display includes GMT/MET

For each information type, the display elements must be identified, defined, and assembled into the initial
display design. As the preliminary design is created, you will be constructing a storyboard that will help
lay the foundation of both the display and intelligence of the expert system. Section 2.3.4 discusses
creating a storyboard, the key element in tying the support operations to the user interface display. Once
the initial storyboard is in place, you can begin its evolution into the application software.

58

IMT 01:12:03"1 VEHICLE OVll

EVENT SUMMARY

103:09:13:00 RULES The Port MRL has failed to release.

103:09:12:42 RULES The Port MRL Release commanded.

103:09:13:0o RULES The Po_ MRL has failed to relee.¢_.

103:O9:12:42 RULES The Pod MRL Relsase ¢orrt,rnanded

103:09:11:36 COMPS DAP in free driP.

103:09:10:20 RULES The MPM has deployed successfully

103:09:09:06 RULES MPM DEPLOY commanded.

MPM/MRL MESSAGE,_

i 103:09:12:42 RULES MRL Mid Release commanded

103:09:13:00 RULES The Pod MRL has failed to release.

103:O9:12:50 RULES MRL Forward Release achieved.

Elal:_ed lirne 8 sec.
103:09:12:50 RULES MRL Aft Release achieved.

Elapsed ta_e 8 Me.

103:09:12:44 RULES MRL Forward in lransit

103:09:12:44 RULES MRL Aft in transit

103:O9:12:42 RULES The Pod MRL release commanded

10_:o9:12:42 RULES MRL Fo,rwatd Release commanded.

Figure 22. The original DESSY display design for the MPM/MRL system.

5.3 Evolution of the User Interface

Throughout expert system development, the user interface will evolve to meet design requirements.
assist you in this development, the following sections are provided with suggestions and guidelines.

To

5.3.1 Designing for Change

Developers can promote user interface evolution by designing for change in two major areas. First, a
separation of the user interface from the expert system will simplify design changes. Second, a well-
structured display class hierarchy, like the expert system's class hierarchy, will lead to flexibility and
encourage reuse of displays. In addition to taking these initial design steps, the developer should remain
open to potential change. The purpose of early design and prototyping is to better understand the
system and learn what changes need to be made.

In DESSY separate display classes were developed with sets of rules to control their object instances.
Changes in these classes and rules did not effect the expert system logic. This design provides the option
of using an alternative interface environment if the need arises. Even if G2 (or some other development
tool) has been chosen to construct the user interface, it is possible that another interface tool may
eventually take its place because of performance or flexibility, or even for political reasons. In any case,
separation of the interface from the expert system should make the software more readable and
maintainable.

Display class hierarchy is as important in the structure of displays as is the class hierarchy of the expert
system. A strong display class structure will allow reasoning over appropriate sets of display items and
will promote reuse. The hierarchy will evolve as the user interface evolves and will contribute to the
development process. For a detailed discussion of class hierarchy of the expert system and its benefits,
see section 3.2.3.

59

4 5
F/V 48/lO3

OGMT 266:19:21:54 O MET 1:23:20:54 SITETDR 01179 GN22 S M24 B F8
RGMT266:I9:21:54 U/D R ATE I

AC AMPS

SHL SR. MID 1. AFT 2 AC1

MPM 2. FWD 1, MID 2 AC2

MPM l, FWD 2, AFT] AC3

7 DAY 2 1 1
RMS MPM/MRL/JETTISON RR3592 CH096

OPER

STAT

21
3

4

5

6
7

8

MR) MOTOR CONTROL ASSEMBLIES

I 2 3 4

PL SEL 2 RETEN LOGIN SYS I OFF

PWR SYS 2 OFF

D

D

D

D

LAT 1 [..AT 2 LAT 3 LAT 4 LAT 5
PL SEL A B A B A B A B A B

1 tAT 0 0 0 0 0 0 0 0 0 0
P.DY 0 0 0 0 0 0 0 0 0 0

REL 0 0 0 0 0 0 0 0 0 0

2 LAT 0 0 0 0 () 0 0 0 0 0

RDY 0 0 0 0 0 0 0 0 0 0

P.EL 0 0 0 0 0 0 0 0i 0 0

3 LAT 0 0 0 0 0 O 0 0 0 0
RDY 0 01 0 0 0 0 0 0 0 0

REL 0 0 0 0 0 0 0 0 0 0

CRT SCRATCH PAD

CRT 1 GNC 201 l

RESU ME

CRT 2 GNC 2210
CRT 3 GNC OS

CRT 4 SM 2 200

SHOULDER BRACE

RELEASE PL BAY MECH PWR SYS] 0

0 IND SYS 2 0

SHL FW'D MID AFT

AC BUS 0 0 0 0 0 0 0 0
ENABLE 0 0 0 0 0 0 0 0

MPM STOW 1 0 0 0 0 0 0 0

0 DPLY I l 1 1 1 1 1 1

MRL [..AT 0 0 0 0 0 0

0 RDY 0 0 0 0 0 0

REL ! I 1 1 1 1

GUIL SYS A D D D

0 SYS B D D D

JETT SYS A D D D

0 SYS B D D D

RMS TEMPS HTR SYS A: ON
S Y SP EP WP W Y WR EE

LED 5 9 59 5 9 5 6 5 6 5 6 56

ABE 59 59 5 6 5 6 59

S ILL TEMPS

D D D

fA fB fC

4.40 3.76 2.56

4.24 4.24 3.12

2.72 3.36 3.92

Figure 23. Existing RMS console displays.

5.3.2 Guiding the Evolution

The process of operational prototyping is evolving a software design to its final state. For this evolution
to be successful, close cooperation must exist between the developer and user. The developer will have
the responsibility for soliciting feedback from the user, and the primary mechanism for obtaining this
feedback is through user interaction with the expert system through the user interface. Cooperative
evaluation of the interface will lead to changes in both the expert system logic and the user interface
itself. Because users do not always understand the importance of their role in providing this feedback,
the developer must take the initiative to encourage user interaction.

In addition to working with a key user contact, it is important for the developer to expose the other users
to the application. Although it is appropriate for a single user to represent the user base, additional users
interacting with the software will lead to a more complete design.

As the software is evaluated and improved, the sophistication of both the expert system and interface will
gradually increase. Thus the level of complexity of the scenarios presented should increase as well.
Initially, user interaction will consist of "playing with" screen displays. Soon, however, simple nominal
case scenarios should be presented so user(s) can evaluate the system as a whole. These scenarios
gradually become more complex and include failures. Finally, canned demos are replaced by real data
playbacks. This concept of iterative operational prototyping with increasingly complex scenarios leads to
a well-designed system in which all interested users have a chance to understand the system and make
contributions.

60

5.3.3 Using a Library

Throughout this guide we have mentioned CLARE,* the Control Center Library for Application Reuse &
Exchange. Using a library can greatly enhance development and improve the final application. Specific
benefits of using a library include potential code reuse, better requirements understanding, and
availability and guidance of standards.

The most obvious benefit derived from a library is time saved by reuse of code, provided that the code is
well-tested and does indeed meet the specific requirements. A goal of CLARE is to include sample
applications, or pointers to applications, for each library item. By providing accessible examples, libraries
can expedite software development and eliminate redundant efforts.

A less obvious but equally important benefit of libraries is their contribution to requirements definition.
Having access to an example application similar to an idea you have in mind, even if it does not exactly
meet your needs, can help you better understand your own requirements and solidify them. It may also
be that a modified version of the existing application will meet your specific needs. Thus additional time
savings can be achieved by having access to working examples that help you understand the problem you
are solving.

A third library benefit is the information that supports the development of application standards over a
wide user community. This is beneficial for maintenance purposes as well as cross-discipline
understanding of applications of other groups. For example, if all flight controllers choose a single
plotting program, or choose navigation buttons that look the same, they will be a step ahead in
understanding each other's applications. And even if flight controllers are not interested their neighbors'
applications, management and software developers likely will be.

Use of a well maintained library could be a great benefit to the NASA mission operations community.
The authors of CLARE encourage its use and urge developers to make their own contributions.

5.4 The DESSY User Interface

Now that the key concepts in user interface development have been introduced, the DESSY example will
be presented. In figures 22 and 23, the original DESSY screen design was shown along with the existing
RMS console display. The following sections provide more recent DESSY screens along with the
concepts that were incorporated into their displays. More information is also available through CLARE.

5.4.1 DESSY Interface Requirements

DESSY design began with a storyboard. The original screen design is shown in figure 22. However,
design consists of much more than a plan for the screen. In the information-gathering step of interface
design, key concepts were identified for inclusion in DESSY. Excerpts from an information
requirements document for DESSY are shown in figure 24. Most details have been removed. This
document corresponds to the information layer of the interface design.

The second layer of the interface as defined in section 5.1.2 is made up of display elements. DESSY uses
text displays, icons, and navigational items and incorporates a Hypercard-like approach in that it makes
significant use of pop-ups to get additional information on display objects. The screen is designed to
include a hierarchical representation of expert system information by presenting high level information
on the main screen and more detailed information on subscreens. The following section discusses the
MPM/MRL and EE DESSY displays, including display elements as well as screen layout.

5.4.2 DESSY Display Examples

DESSY currently monitors two RMS subsystems: the manipulator positioning mechanisms and the
manipulator retention latches (MPM/MRL) and the end effector (EE). Each subsystem has its own
display. An overview discussion of these two screens and their displays is provided. A detailed
explanation of these screens is available in the form of cue cards, which are shown in Appendix B.

*URL: http://tommy.j sc.nasa.gov/-clare

61

5.4.2.1 Telemetry Data

The first items of interest on the DESSY displays are the telemetry data boxes. On the MPM/MRL
display these are represented as a set of small boxes in the center of the display. Because each piece of
data is closely tied to a particular MPM or MRL, the layout of the display is such that the data boxes are
placed underneath the MPM or MRL to which they are related. In addition, each column pair represents
the system-1 and system-2 subparts of the MPM and MRL.

:iiiii!i!!i_iiiiiii!!i_iiiii!ili

Figure 24. Information requirements document.

62

Thedataboxesfor the endeffectoraregroupedandlabeledaccordingto functionality.This is because
theoperationsof thetwo endeffectorparts,snareandrigidizer,aremorehighly integratedthanMPMs
andMRLs. Endeffectoractivityalmostalwaysincludesdatachangesin bothsystems,whileMPM and
MRL activitiesare independent. Thus while the MPM/MRL screen divides data based on the physical
systems, the EE screen corresponds more closely to operational activity. The MPM/MRL and EE screens
are shown in figure 25.

5.4.2.2 Switches and Talkbacks

Both the MPM/MRL and EE displays contain switch and talkback icons. These were created in attempt to
provide flight controllers with some indication of what the onboard crew saw. DESSY switches are in
some cases driven directly by telemetry and at other times by expert system inference, depending upon
the availability of the data. For example, the MPM Stow switch can be set to the stow position by a single
Stow Command MSID; however, there is no Deploy Command MSID, and therefore other data sets the
switch position during a deploy. In either case the switch represents the position of the actual hardware
switch on board the Shuttle. Talkbacks are often merely single data boxes; however, they may be more
complex. The MPM and MRL talkbacks are each comps made up of the logical "and" of data values for
the system-1 of their respective systems. Because the onboard talkbacks behave in this manner, DESSY's
talkbacks were constructed to use telemetry to do so as well.

Using icons such as switches and talkbacks does seem to add depth to the user interface, providing a more
appealing screen. There is, however, a pitfall to using such realistic graphics. Switch failures, faulty data,
or incorrect expert system inferencing (perhaps based on faulty data) can all lead to an expert system
switch or talkback state that does not reflect the tree state of the onboard hardware. It is important to
make sure the users understand that switches and talkbacks, like other display objects, can only reflect the
data they receive. They are data and/or expert system displays only and cannot be relied on as a certain
reflection of the onboard hardware configuration.

5.4.2.3 Graphical Icons

Both DESSY displays use graphical icons to correspond to the systems they monitor. Square boxes
represent MPMs and triangles represent MRLs, while more detailed snare and rigidizer pictorials are used
for the end effector. The MPM boxes and MRL triangles lead to further MPM/MRL pop-ups with more
graphical icons. Their advantage is that they are simple, yet still convey necessary information with a
more complex graphic available if desired. They also have three color states--red, yellow, and green--
corresponding to failed, degraded, and nominal status.

The snare and rigidizer icons contain a more detailed icon description, eliminating the need for pop-ups.
These icons change their shape to reflect the current state of their corresponding system parts. For
example, the snare icon depicts the snares as being open, in transit, or closed. For both systems,
providing these pictorial icons along with text supports a quick state and status view of the entire system.

5.4.2.4 Text Displays

Text displays are also a major part of the DESSY screens, reflecting the icons discussed in the previous
section. Because they provide summary level information, they are immediately visible at a glance. The
MPM/MRL screen contains text displays for the state and status of each of the two systems. State and
status text displays are also available for individual MPMs and MRLs through their pop-ups.

The end effector screen contains text displays for the states of the snare and rigidizer, and consolidated
system text displays for the state and status of the end effector system. It was the integrated nature of the
snare and rigidizer subparts that led to this display design.

In addition to the text boxes, a message list is available for both displays. Any event can be recorded to
this log. Examples include state changes, power start-ups, and failures. These events are all time-stamped
and may be stored in an electronic file.

63

EE MODE

AUTO

MANUAL

RELEASE

CAPTURE

_N CONTR
RIGID

END EFFECTOR SYSTEM

(_DR time: 1

RIGIDIZER

AT TENUATION

i LIMPING] rl"E_

MICROSWITCHES

C_

DERIG__ i

DERIGID

MECH POWER
SYS 1 S¥S 2

OFF OFF

DEPLOY RELEASE

STOW

MPM

LATCH

MPM/MRL SYSTEM

IItime: 32
SHLD

ii!iiiii¸ iiiiiii¸

I time: 5
FWD

Illltime: 5 IlI time: 5
MID AFT

Figure 25. End effector and MPM/MRL screens.

64

5.4.2.5 Navigational Items

DESSY makes extensive use of navigational items. Both displays contain buttons and menus to reach
pop-ups or control the expert system. The same types of buttons and menus are available in both. See
the cue cards in Appendix B for a more detailed explanation of the navigational items.

5.4.3 DESSY Screen Arrangement

The screen layout of the intelligent system is another important aspect of the user interface. DESSY
screens, shown in figure 25, contain a status overview, switch and talkback displays, system icons, and
groups of data displays. An attempt was made to make the two screens as symmetric as possible;
however, differences in systems led to differences in their user interfaces. The grouping of similar
displays and the arrangement of those groupings is the feature of the DESSY screens on which this
section focuses.

The DESSY status appears near the top or bottom of the screen to support a "status at a glance." Subpart
icons, e.g., snare and rigidizer icons of the end effector system, are grouped with their state and timers,
supporting the next level of information detail. Switches and talkbacks, which reflect those found on
board, appear together. Finally, various types of data displays are grouped according to function.

In the end effector system, command, microswitch, and alarm data all form data groups. They are
outlined and labeled on the EE screen. The commands group forms a grid whose rows represent which

_'." command is being given (CAP, RIG,...) and whose columns represent command type (CMD, DR, DRV).
Microswitch and opstat data for the MPM/MRL system are grouped similarly, but have been aligned
under the corresponding MPM or MRL icon, and are also in columns corresponding to their system A or
system B power source. The rows of data in this grid correspond to the particular data type (STO micro,
DPY micro...). Study the figure to understand these concepts. During operations, a "flow" emerges,
within and among the groups, of changing data patterns. This flow must be easy for the human to
follow.

Screen layout is perhaps the trickiest part of user interface design. The storyboard stage of software
design and requirements definition first addresses this challenging issue. Use the DESSY examples for
inspiration, but do not allow them to limit your own ideas. Keep in mind that appropriate groupings of
data and consideration of flow will allow construction of a screen that best supports monitoring
operations.

5.5 User Input and Control

Users of intelligent monitoring systems will have some interaction with the software, affecting its output.
This will likely be limited for real-time operations, but may include a significant amount of input if the
system performs diagnostics. The following sections address three types of input a user might provide to
an intelligent system.

5.5.1 Real Inputs

A type of input avoided by DESSY is "real input," or information that affects the logic of the expert
system. This might include setting a variable, forcing a rule to fire, or changing a data value. The input
might be used to reset or change part of the intelligent system, or it might be supplemental information to
be used for further state or status determination, or for diagnostics. DESSY avoids this type of
information because it is currently strictly a data monitoring system. The credibility of all DESSY
conclusions can be directly tied to telemetry.

Intelligent monitoring systems that can be altered by end users are more complex, but are not
unreasonable. Issues of concern include affects on real- time monitoring, tracking of user input, and
"undo's" or correction of user mistakes. This feature would be most useful in diagnostics where the real-
time nature of monitoring systems is not in jeopardy. Some future version of DESSY might include such
a feature, as long as performance is not impaired.

65

5.5.2 Resets

Resets involve changing some expert system part to a default value, removing the current value from the
system. This is similar to, but not exactly the same as, inputting a real value into the system. Resets do
not cause chaining and do not affect expert system logic. They simply replace the current visible value
with the default value. They are used to remove incorrect or outdated information from the user
interface.

Examples of resets used in DESSY include (1) setting a timer to zero, (2) setting the status of a data value
to functional, and (3) setting the status of a subsystem to operational. Each of these actions removes the
display value and resets the value in the knowledge base object, but has no other affect on the expert
system.

System resets might be used if the expert system has made faulty conclusions or if the user no longer
wishes to see a failure annunciation. Resets should always be recorded, along with any explanation
necessary to justify the user's action.

5.5.3 Acknowledgments and Logs

Acknowledgments and logs have no affect on the expert system, but may affect the expert system
display. An acknowledgment is used to verify that the user has seen an expert system conclusion. It
should change the related user interface display, may include a reset, and should always be logged. Logs
are used to record any information the user deems necessary. In addition to common events being
logged automatically, it is a good idea to provide a log for any additional information the user wishes to
record.

5.6 Expert System Management

In addition to understanding how to use the expert system to monitor operations, the end user should
learn something of how the expert system works and how to manage it. Areas where expert system
management is necessary include control of the data interface, control of interfaces to other software
applications, and control of the expert system itself. These will be discussed in the sections below. In
addition, the user should be provided with a simple mechanism for launching and shutting down the
expert system.

5.6.1 Control of the Data Interface

Although the end user should not be required to understand details of the data interface, he or she should
know the basics of how the expert system gets its data so that if problems with the data source arise, the
user may have options for recovery. G2 programs have an interface object which acts as the connection
port between your knowledge base and the G2 Standard Interface (GSI) program. The GSI program is
itself the interface between G2 and the data source. As a developer, you will want to identify all normal
data connectivity problems and provide indicators should these problems be detected. Although the user
need not understand the details, providing access to the connection object status and presenting the user
with a simple diagnosis of the situation will shorten the time to recovery and perhaps even eliminate the
developer's or data manager's involvement. Sometimes recovery may be as simple as a restart or
switching the data source workstation. At other times it may be more severe. In any case, providing the
user with the knowledge and power to solve simple problems will benefit everyone.

5.6.2 Control of the External Software Interface(s)

Control of external software interfaces follows the same guidelines as control of the data source interface.
Provide users with easy access to simple status information, and give them a chance to diagnose the
problem themselves if they so choose.

5.6.3 Control of the Expert System

The mechanism for controlling the expert system within DESSY was designed to allow users to continue
to use the data monitoring parts of the DESSY display, even if the expert system was determined to be
unreliable and thus unusable. This might conceivably occur because of bad data, insufficient computer

66

performance,or faulty logic. In anycase,theDESSYdeveloperswantedDESSYto beusefulasadata
monitoringdisplayevenif theexpertsystemcouldnotcurrentlybeused.

DESSYusersareprovidedwithacontrolbuttonthathastheeffectof turningoff thepartof the expert
system display that reflects the monitoring and diagnostic activities. The specific action is to grey-out the
part of the display related to the expert system, while leaving visible the portions of the screen that simply
display telemetry data. Thus any distracting faulty conclusions are dimmed while data continues to be
prevalent.

This function has been deemed control of the expert system; however, it is actually a control of the
display. For the user ,however, the net effect is for the expert system part of DESSY to be turned off.
Although within the DESSY code there is a capability for disabling rules, and in fact appropriate rules are
disabled in cases of loss of signal (LOS), the specific action referred to above is actually user interface
control.

5.7 The Developer Interface

A final area of importance in developing the expert system and its interface is constructing a useful
developer interface. Many of the aspects of the developer interface were covered in the design and
organization subsections of section 3, "Building the System." Here are provided some additional
suggestions specifically related to the developer's interaction with the software, for developers are software
users too, and users may at times play the developer's role.

5.7.1 Knowledge Base Organization

Good knowledge base organization, discussed in section 3.1, is a crucial aspect of the developer interface.
The developer must be able to navigate through the knowledge base quickly and must be able to easily
locate items. G2 is very lenient in allowing developers to construct KBs with little or no organization.
Thus developers must enforce this discipline upon themselves and organize the knowledge base so that it
is useful to them and others who might develop or maintain it.

5.7.2 Access Modes

A strength of the G2 environment is that it allows G2 Modes to be defined that set specified restrictions
on knowledge base items. These restrictions include actions such as going to pop-ups, activating pull-
down menus, or preventing an item from being deleted or moved. The G2 manual should be consulted
for a complete list of knowledge base restrictions.

In DESSY four modes are especially useful: (1) the administrator mode, provided as the G2 default
mi3de, (2) an end-user or operator mode, (3) a testing mode, and (4) a demo mode.

The administrator mode has no restrictions. It gives the developer full access to knowledge base items.

The end-user or operator mode has significant restrictions to restrain the user from "messing up" the
knowledge base or "getting into trouble." It restricts the user in such activities as moving display items,
changing rules, and deleting objects. In addition, the end-user mode provides appropriate pop-up menus
for items while hiding unneeded G2-provided menu choices. (See the G2 manual for help in
understanding these concepts.) In short, the end-user mode provides the polishing to make the
application as user friendly as possible.

The testing mode is useful to developers because appropriate testing activities such as "change value" or
"start test procedure X" can be added to item menus to expedite testing. Other unneeded menu choices
may be hidden, and restrictions such as those given to end users may be used to prevent the
developer/tester from accidentally harming the knowledge base during this phase. The developer would
define testing restrictions as needed to expedite the testing process.

Finally, a demo mode was found to be quite useful, giving a knowledge base demonstrator the
appropriate menu choices, while hiding unnecessary G2 menu choices. In addition, many of the usual

67

end-userrestrictionsmaybeappliedto preventaccidentsduringademonstration.Thedevelopershould
definethismodeto allowdemonstrationsto goassmoothlyaspossible.

5.7.3 Developer Displays

The final area of the developer interface is developer displays, items usually hidden from the end user
that the developer uses in understanding or testing the system. Displays to help the developer understand
the system include state diagrams and rule documentation. These items are not used as part of the
knowledge base logic, but are there simply to help the developer create the system and to help future
developers extend or maintain it. They also serve as a valuable aid to the developer in communicating
with the end users.

There are a number of displays which aid in debugging and testing. G2 provides many simple buttons
and displays; these were discussed in section 3.5. In addition, the developer may want to construct panels
of frequently used items for quick access to those items. Examples from DESSY include a button panel
containing the various button types used in DESSY development and a demonstration panel containing a
set of buttons that launch select demo procedures. These items were found to be helpful throughout
DESSY development.

Once your knowledge base development is complete, you may decide to delete most developer displays if
performance or knowledge base size is an issue. If you do not have these restraints, however, leaving
these developer aids in the knowledge base will ease system maintenance and help future developers
understand the work you have done.

68

Section 6

Testing the System

After each cycle in the design and development of the expert system, a testing phase occurs. Although
testing is generally thought of as the final stage of the application, and indeed certification or quality
assurance testing should conclude software development, testing must occur regularly throughout
operational prototyping.

Each member of the development team plays a role in ensuring the software is tested to the users' and
organizations' requirements; this section attempts to define the unique roles. The developer must create a
test plan which includes testing the software at all appropriate levels. In creating this plan, the developer
must be aware of the various types of testing that should take place. The user(s) must be prepared to
provide test case scenarios. The scenarios should vary in complexity and detail, and evolve to include
more and more realistic situations.

The sections that follow cover various aspects of testing real-time monitoring systems. Section 6.1,
"Verification and Validation," discusses rule consistency issues, while section 6.2, "Creating Test Objects,"
reviews test object mechanisms discussed in section 5.6, "Developer's Interface." "Writing Test Cases" is
discussed in section 6.3 and "Testing with Real Data" in Section 6.4. Section 6.5, "Real Time
Performance," brings up some important performance-related issues and section 6.6, "Testing for
Continuous Improvement," relates testing to the overall operational prototyping process. Section 6.7,
"Certification Testing," explains the final testing process used to gain certification of the intelligent
system.

6.1 Verification and Validation

Verification and Validation (V&V) are common buzz words in software testing. Although DESSY's
testing included V&V, most work done in this phase focused on test case scenarios. V&V are briefly
covered as related to the DESSY project. See (Chandrasenkaran and Punch, 1987) and
(Chandrasenkaran and Punch, 1988)

.6.1.1 Definitions

Verification involves ensuring that the code you write is logically correct and "bug-free." Validation, on
the other hand, involves ensuring that the problem you have addressed truly meets the requirements of
the actual problem. Because there are numerous papers availablein the topics, the details of these
definitions are not covered. Instead, the focus is on how each concept was applied in DESSY.

6.1.2 Verification of Rules

Sophisticated software tools are commercially available to verify rule sets. However, because DESSY
rules were separated into relatively small sets, manual verification sufficed. For each set, the telemetry
relevant to that set was identified, along with all possible patterns of that telemetry. Because the telemetry
was isolated into small groups, the problem was tractable. Valid configurations, both nominal and off-
nominal, and invalid or impossible configurations were identified. Of course any data configuration
could occur due to noisy data, but no diagnostic or monitoring rules need be written for meaningless
configurations. However, care must be taken to ensure that meaningless data configurations resulting
from subsets of noisy data do not cause diagnostic rules to fire incorrectly. This is achieved by ensuring
that the scope of the diagnostics rules is narrow enough that these rules are not triggered by noisy data,
while being broad enough to catch a variety of failures. See section 3.3.4, "Status Monitoring Rules."

DESSY also has some rule chaining; however, even chained-to rules are ultimately derived from telemetry
in real-time monitoring systems. This concept was handled by the small rule sets using small data sets
(perhaps two or three pieces of data) acting as a single parameter in the rule antecedents and conclusions.
(See section 4.3.2, "Context-Sensitive Bounded Pattern Recognition"). A single parameter with several
states, for example an MPM command parameter with states of Deploy, Stow and none, could be verified
and then used as a single element in rule verification. State diagrams and tables listing related data were
useful in identifying valid data sets for various system configurations. This approach worked adequately

69

for DESSYbecausethelevelsof chainingareshallow,i.e.,usuallytwoor threerulesdeep. A more
complexexpertsystemwouldlikely requirea morerigorousverificationapproach.

6.1.3Validation of the Knowledge Base

Only the user expert can reliably validate a knowledge base because this task requires a deep
understanding of system operations. The approach used in DESSY was to use real test scenarios, either
mission or simulation data, to validate expert system behavior. Many times in this process it was
discovered that the developers, and even the expert, had made incorrect assumptions about data behavior,
and DESSY rules had to be changed. Even the end user may find it difficult to correctly recall exact data
behavior of all operations and failures. Having access to the expert was particularly important in this
phase of software testing.

Testing with real data and having the user expert closely involved both in development and testing were
the validation approaches applied to DESSY. It is important to have access to reliable test examples for
all operational scenarios modeled, and multiple similar test cases which might include noisy data elements
are even better. Although no formal validation mechanisms were applied, this approach was found to be
reliable and led to a correct and robust system.

6.2 Creating Test Objects

To thoroughly test the knowledge base, it is useful for the developer to create a suite of test objects that
are easily accessible throughout development, to both the development team and the end users. These
include test buttons, readout tables, and operational scenarios procedures. Section 3.5, "Quick Test
Buttons and Displays," provides detailed discussions of many test objects one can create in G2. Section
5.6, "Developers' Interface," illustrates other ways G2 can be used to enhance the testing process.
Scenario procedures are discussed in the following section.

Test objects can be created and placed with their relevant rule sets and/or objects, or they may be located
on separate testing panels. The former approach can make locating the objects easier, while the latter
allows simpler scenario construction and provides the capability for these objects to be stripped out of the
final delivered system. Your knowledge base may include both.

Providing a separate test panel for end users was found useful in DESSY verification. Users can
configure the panel with select data patterns by setting MSIDs, and observe the results on the DESSY
screen. This is more favorable than directly setting the displays because users can create a data
configuration scenario on the test panel and then observe that scenario on the DESSY screen. Users also
want easy access to MSID number during testing, which is available on the test panel. The test panel is an
important DESSY display because it allows users to build confidence in the system by directly controlling
its inputs.

6.3 Writing Test Cases

Once you have satisfactorily tested individual knowledge base components with quick test buttons and
displays, you can began developing operational scenarios. Although there are several methods of doing
this in G2 (e.g., using the G2 built-in simulator or reading a test data file through G2's GFI interface),
scenario testing in DESSY was done using a very simple G2 mechanism, the G2 procedure.

6.3.1 Simulation Procedures

The G2 procedural language is very similar to Pascal and can be used to manipulate almost any
knowledge base item. Its key benefits in scenario development are its ability to execute statements both
sequentially and in parallel, its ability to launch other procedures as either dependent children processes
(waits on return) or independent processes (executes in parallel), and its wait statement. These features
allow the developer to construct very flexible test scenarios. In addition, G2 procedures have standard
procedural features such as local and passed parameters, if and case statements, and error handling
capabilities.

70

6.3.2 Scenario and Configuration Development

In developing test procedures, the programmer should begin with simple nominal case scenarios. A
scenario can be developed for each known system operation, and scenarios should cover all nominal
configurations defined in the state diagrams. These nominal case scenarios can gradually be extended to
include the effects of noisy data or single sensor failures. It is important to verify that the expert system
reacts appropriately to nominal scenarios before more complex failure scenarios are explored. Verifying
nominal procedure activity is key in the validation part of testing.

It will be helpful to write procedures as generically as possible, passing in appropriate parameters, and
breaking procedures into smaller building blocks to expedite the overall testing process. For example, in
the DESSY MPM/MRL system, the RMS Power-Up and Power-Down subsequences were written as stand-
alone procedures. They were then called out by higher level procedures as part of a simple scenario. If
desired, more complex scenarios, possibly including both MPM and MRL operations, could also be
constructed, primarily for demo purposes.

Once a complete suite of nominal procedures has been constructed, the failure spaces can be explored.
Standard types of failures, discussed in section 2.3.5, should be included in the test scenarios. Making
these procedures flexible with appropriate input parameters will expedite testing. In DESSY, some failure
scenarios even included a randomness factor. For example, the test scenario might fail a randomly
selected microswitch, and then proceed with operations. Adding randomness to test scenarios increases
their usefulness in verification by checking system behavior and in validation by proposing new
scenarios.

In addition to creating test scenarios, it was useful to create procedures to set up particular data
configurations. Examples include an MPM-stowed procedure which simultaneously sets all stow
microswitches to active and deploy microswitches to inactive, or an MRL-latched procedure which sets
latch micros to active and release micros to inactive. Note that these are not scenarios--they are static
system configurations. They provide yet another way for the developer and user to interact with the
expert system.

6.4 Testing with Real Data

Although "canned demos" or scenario procedures are an excellent means for testing a knowledge base,
there is no substitute for testing with real telemetry data, running from a real data source. This data may
be live or prerecorded; it may be from a mission or from a simulation from the Shuttle Mission Simulator
(SMS). Any of these sources will work; however, access to all of them is ideal.

6.4.1 Real Data and System Validation

Real data will provide the ultimate validation test for your knowledge base. Because even experts can be
mistaken about the details of operations, data taken directly from those operations provide the most
reliable source for system validation. In fact, even though SMS simulation data should be thoroughly
used and is the only practical way to test a wide range of real failure scenarios, only mission data provides
unquestionably accurate test cases.

The best way to test and validate a knowledge base for NASA's mission control environment is to obtain a
test suite of scenarios generated by the SMS. This is not necessarily a straightforward task, and help from
the flight controller will be needed. Once the test suite of all known failure classes is constructed, the data
should be fed into the expert system and records should be kept of system performance. Because it is
unlikely that the expert system will pass all tests the first time around, the developer and user team should
be prepared to resolve any problems, whether they be verification or validation problems, and replay the
test suite. Only when the expert system can give satisfactory performance during the entire suite should it
be considered validated and ready to use.

6.4.2 Completeness Checking

An inevitable limitation of expert systems is incompleteness, their inability to detect all failures, even all
known failures. Rather, expert systems can only detect failures which have been specifically entered into
the system knowledge base. It is important for the expert system development team to see that the user

71

groupunderstandsthiscommon-senselimitation,anddoesnot expect super expert capability to detect
any failure whatsoever.

Real time data testing can help increase the completeness of the expert system by exposing failures that
the expert may have forgotten or not known about. In DESSY, several new failure scenarios were
discovered during the testing phase, leading to improvements to the software. Although the developers
were able to verify DESSY behavior for many known configurations, it is not possible to track all possible
sequences of data. Thus it is unlikely that a knowledge base can ever be thought of as complete. In any
case, testing the system with real data will increase expert system completeness and decrease the chances
that the system will miss a known failure.

6.5 Real-Time Performance

Another issue that arises during the real-time testing phase is that of expert system performance. Because
performance can vary greatly depending on the computer platform and its load, it is important to test
your software under the same loading conditions that it will operate under during real operations. This
testing setup should represent the exact configuration, including computer and software load, monitor,
and network load.

In an earlier phase of the DESSY project, development and testing was done on a SPARC 2 platform with
only one copy of G2 running. At that time the mission control environment consisted of a DEC with a
Masscomp display. There was also the possibility of multiple G2s being used simultaneously in the
control center. DESSY was deployed into this environment without any performance testing. It was then
discovered that the Masscomp display could not support the expert system's graphics. Needless to say,
this set the application back and greatly lowered user acceptance.

A related performance issue for DESSY is software loading time. Because DESSY is made up of many
software modules, it takes several minutes to load. In the mission control environment when operations
occur rapidly, this is often unacceptable. The solution was to merge the final DESSY into a single file to
reduce load time. G2 also has a "strip text" option, which can decrease the size of the knowledge base
and reduce load time.

Testing in the actual operational environment is extremely important. This testing should include that
hardware and time constraints that exist in real operations. The DESSY developers learned this lesson
and hope future software developers can learn from these experiences!

6.6 Testing for Continuous Improvement

Developers should remember that testing is only one phase of the entire development process. As you
begin to test, establish expectations of making improvements; do not have an accept or reject attitude.
Because of the nature of operational prototyping, you will have constructed a system that is evolving.
You should develop appropriate evaluation criteria for where you are in the process and plan your test
cases and expectations accordingly. Following the levels of testing defined above, quick test buttons and
displays, simple scenario procedures, complex scenario procedures, and finally real data will allow you to
evolve the system into a robust tool that can be deployed into the user's environment.

6.7 Certification Testing

Certification testing is the final phase of testing in which a software application is approved for use on a
flight controller's console for the purpose of making flight-related decisions. It occurs after all other
testing has been performed, as shown in figure 26, which depicts the life cycle of an intelligent system. It
includes both a number of integrated simulations and "flight following." In both forms of certification
testing, the flight controllers perform their jobs without knowing what problems to expect. This provides
a realistic test of how well the intelligent system supports the flight controllers in performing their job.

72

Design and
Development

Testing for
Continuous

Improvement

Storyboard
Certification

Testing

Figure 26. Intelligent system life cycle.

Integrated simulations, the first type of certification testing, help test the software by confronting it with a
large number of failure situations (more than would be expected from a comparable amount of actual
mission data). Simulations are considered integrated when they involve more than just one flight control
discipline. Not only does an integrated simulation allow a fuller portrayal of a complex problem, it also
tests performance in the presence of all other software in the control center. It allows detection of
performance problems and difficulties in receiving telemetry streams when the computers are loaded.

Flight following is a testing situation in which live mission data is directed to the software application, but
flight-related decisions are not based on the results from that application. Flight following typically
presents fewer problems from the monitored system than simulations, but tends to present the software
with noisier data. Consequently, flight following tests the software more rigorously in terms of receiving
telemetry and dealing with noisy data, whereas simulations test software more rigorously in terms of
detecting monitored process problems.

Certification is a stamp of approval given to a software application when it has been shown trustworthy
enough to be relied upon for flight-related decisions. This trustworthiness is rarely stated in purely
quantifiable terms, probably because there are a number of ways the software can perform differently
from its user's expectations. One critical error might be enough to deny certification, whereas a number
of noncritical surprises might be tolerated.

DESSY certification is expected to occur in phases. Initial certification will be for presentation of
telemetry. Later certification will be for expert system performance. In other words, DESSY will be
considered useful for supporting flight-related decisions if it presents telemetry reliably. Later, after
considerably greater experience with DESSY's fault recognition logic (and when that logic has proven
itself accurate and reliable) the expert system portion of DESSY will be certified. There is also indication
that a related application called the Remote Manipulator System Checkout software, or RMSCO, will also
undergo a phased certification. (See CLARE for information on this application.) This will allow
RMSCO to provide early, basic support for monitoring RMS checkout procedures, followed by later,
enhanced support. It illustrates the certification process as a stamp of trustworthiness for a specific type
of support.

73

Section 7

Documentation and User Training

As in any software project, documentation and user training are both necessary steps toward a complete
deliverable product. This section discusses specific knowledge base aspects that should be documented
and provides several effective training mechanisms. Sections 7.1, "Documentation within the Knowledge
Base," discusses several knowledge base structures that can be used to support documentation. Then
"Documentation of Requirements," which aids in the evolutionary prototyping process, and
"Documentation of Testing," necessary to ensure that the software correctly supports the task, are covered
in sections 7.2 and 7.3.

The next sections focus on user training; however, setting up the suggested training tools is another
excellent way to further document your knowledge base. Section 7.4 discusses cue cards and their
benefits. Section 7.5, "The Tutorial: Interactive Exploration of the Expert System," provides yet another
example of an effective documentation/training tool. Scenario demonstrations are discussed in Section
7.6 This construct provides documentation of test scenarios as well providing a template for effective
demonstrations. Finally, Section 7.7 discusses the steps in "The Developer-User Handover," including
delivery of documentation and training materials, as well as the software itself.

7.1 Documentation Within the Knowledge Base

A variety of tools can be used to effectively document your knowledge base. Discussed are several types
of documentation found in DESSY, including organization strategies which provide easy-to-follow maps
into the knowledge base. Other documentation forms such as state diagrams and references to
supporting literature are also useful. They can be left within the application itself to support further
development and maintenance, or can be stored in a separate knowledge base module that is merged into
the system when needed. Modularizing the documentation segment of the knowledge base may be
advisable if performance or knowledge base size is an issue.

7.1.1 Knowledge Base Organization

One of the most effective means of documenting a knowledge base is to properly organize it so that an
outline of the software is provided within the hierarchy. The G2 tool supports this type of organization
by allowing users to create hierarchies of both workspaces and modules. Sections 3.1.1 and 3.1.2,
discuss these concepts.

Modules are G2 files which allow the user to logically separate software where needed. They contain
dependencies upon one another, forming a hierarchy. To create a workspace hierarchy within a module,
a workspace holder object is defined which serves as the basis of the internal hierarchy structure. These
workspace holders are then labeled appropriately, providing an outline of the software within a module
from the highest to lowest levels.

How do modules and workspace holders contribute to documentation? Because these structures force the
user to think of software in a structured, hierarchical manner, an outline will be formed of the software as
the system evolves. This outline can serve as the backbone of code documentation. For example, at the
highest level, the module hierarchy provides insight into software. Figure 27 shows the end effector
module hierarchy. Even from this abstract view, it is easily seen that this knowledge base contains rules
associated with the end effector, uses a timer, and contains predefined simulations.

Within each module workspaces also form hierarchical outlines of the software. In DESSY each module
has a root workspace from which all others are created. Examples of workspace hierarchies from two of
the modules are provided in figure 28. The EE-Defs module, to which EE-DEFS-ROOT belongs,
contains a variety of end effector definitions as well as some objects and specific end effector timer
information. EE-RULES-ROOT, from the EE-Rules module, contains all end effector rules. Having this
structure easily accessible not only documents the types of rules provided, but gives the peruser quick
access to any rule category.

74

lee-module [
I

I I
lee-rules I [dessy-heade_

I

[ee-defsl[_ [dessy-def_
I

[aessy-aefsJ
I

,Ibuttonsl [buttont

I

! interface[

Figure 27. End effector module hierarchy.

EE-DEFS-ROOT [

D E-MSID-DEFS

_ EE-DISPLAY-DEFS

D EE-DEFS

D EE-OBJECSFS

D EE-TIMER-WS

EE-DEACTIVATABLE-RULES

D EE-SYS-STATUS-RULES

D RIGIDIZER-RULES

D SNARE-RULES

D EE-DERI G-ALARM-RULES

EE-RELEASE-ALARM-RULES

• • •

lEE-RULES-ROOT [

D EE-DEACTIVATABLE-CTRL-RULES

_ EE-DISPLAY-RELATIONS-RULES

-ON-RULES

.-_ EE -DEAC_T_VATAB LE-RULES

EE-ALWAYS-ON-RULES

EE-SYSTEM-STATE-RULES

D EE-STATUS-CORRECTION-RULES

DEE-MODE-RULES

D EE-MAN-CTRL-RULES

Figure 28. End effector sample workspace hierarchies.

75

TheEE-RULES-ROOTtells theknowledgebaseinspectorthatsomerulesaredeactivatableandothers
alwaysremainturnedon. Thesubcategoriesof rulescanthenbefollowedaswell. Notethatthoseshown
in figure27 representonly apartiallistingof all endeffectorrulescategories.TheMPM/MRLmodule
hasa similarmoduleandworkspacehierarchy,soanyonefamiliarwith theendeffectormoduleshould
beableto perusethismoduleaswell,andviceversa.

Theworkspaceandmodulehierarchiesarejust thebeginningof knowledgebasedocumentation,but
theyrepresentan importantfirst stepthatshouldleadto othergooddocumentationhabits.
Documentationshouldbeeasilylocatedandshouldbereadable.A strongknowledgebaseorganization
will supportboththesefactors.

7.1.2 State Diagrams

Another form of documentation useful in DESSY is the state diagram. Originally used as a tool to
understand states or physical orientations of a hardware system, state diagrams can also serve to document
this understanding and the rules which result. Figure 16 showed the state diagram of the MPM. Because
MPM state change rules were constructed directly from this diagram, it remains an ideal graphical
overview of the state change rules. It captures the significant knowledge embedded in the rules and is
easy for an expert system novice to understand.

State diagrams may be static or animated to reflect the current state of a running system. They may be
hierarchical in nature and reflect substates of a given state. Although these extensions were not fully
explored in DESSY, they are simple to construct and might be appropriate for your knowledge base
documentation. If performance is an issue and you feel state diagrams would impair your running
knowledge base, the state diagrams could be stored in a separate module that is eliminated from the
module hierarchy during run time.

7.1.3 Flight Rules and Other Support Documentation

Support documentation, probably taken directly from literature and flight manuals, should be exploited
throughout knowledge base construction. Although it is not feasible or even desirable to have all support
documentation on line, that is, recorded within your software, you will probably want to include
references to relevant documentation wherever possible.

Flight rules and schematics are specific examples of sources for documentation. In DESSY some expert
system rules reflect a specific flight rule, information which would be useful to the flight controller users.
Tables from schematics that contain data set configurations and their implications are also useful. These
tables can be included and enhanced by highlighting current scenarios within the table. DESSY contains
several of these animated tables.

Documentation with credible sources will give credibility to your knowledge base. Some documentation
will serve only as a developer's guide to your system knowledge, while other documentation may be
accessible by the user when the system is running. Keep in mind that providing references for rules and
definitions will not only help other developers, but will help you as you return to parts of the knowledge
base you haven't recently visited. In any case, consistency, thoroughness, and preciseness will lead to a
usable and maintainable system.

7.1.4 Documentation Overhead

The only disadvantages to documentation in a real-time system are knowledge base size and potential
performance impacts. If performance or size is an issue, you may need to limit the level of
documentation included in the run time system. This can be done in two ways. First, it may be possible
to record much of the documentation in a separate module that is not loaded when the run time system is
deployed. This solves performance issues; however, it might prevent you from placing documentation
near rules and objects where this information would be most useful. Second, you may want to include
only reference pointers instead of the reference documentation itself. Although this limits the
information available to the user or developer, it may be all that is needed for parts of the expert system.

76

In DESS¥,on-linedocumentationwaslimitedto preventtheknowledgebasefrom becomingtoolarge
andsothatperformancewouldnotbeaffected.However,selectreferenceinformationthatflight
controllerssaidwouldbeusefulin performingtheirrun timetaskswasincluded. Examplesinclude
telemetrybubblepop-upscorrespondingto displayedMSIDsandlogic tablestakenfrom subsystem
schematics.In addition,intelligencewasaddedto logictablesto providetheuserwithevenfurther
assistance.

Thespecifictypeandamountof documentationfor yoursystemwill dependona numberof factors,
includingperformance,availability,anduserneed. Documentingthroughouttheprototypingprocess,
however,canimproveunderstandingof theapplication,andthereforeproducea superiorknowledgebase
product.

7.2 Documentation of Requirements

Documentation of requirements can help guide developers through prototyping, as well as provide a tool
for tracking progress. The DESSY requirements document was a living document throughout DESSY
development. It was not a formal list of application "shalls." This document contains plans for future
development as well as accomplishments.

Specific information in the requirements document includes, for example, identification of displays and
their functions; identification of system states, commands, and failures determined by the expert system;
special features such as resilience to noisy data; logging capabilities; and test case scenarios. A shortened
version of the End Effector DESSY requirements document is provided in Figure 29.

Figure 29. The End Effector DESSY Requirements Document, shortened.

77

Figure29. (concluded)

78

7.3 Documentation of Testing

Section 6 discussed the necessary steps and motivation for testing expert system software. There are two
independent phases in system testing. The first is to find logic errors in rules so that the system may be
evolved and changed to correctly monitor operations. The second phase begins only when the first is
complete. It is to verify that there are no errors in the rules and that no additional changes need to be
made. Both phases need to be thoroughly documented.

When testing is done to evolve and correct the system, test runs are repeatedly made and the results
recorded. DESSY has a test file book in which each test run was recorded, along with the expert system's
behavior and any corrections that were made to the system for that run. A subsequent run for that case
would again record behavior and document corrections if any were needed. Figure 30 shows an example
from the Test Case Log used in DESSY, and figure 31 shows a subsequent run after modifications were
made. Also provided is a set of simplified screen snapshots on which particular data patterns can be
easily recorded. An example is shown in figure 32. Note that the example shown provides the MET,
indicating that the data came from real telemetry, rather than a "canned" test procedure written by
developers. Tests made with canned data would be recorded similarly.

After sufficient testing has been done and appropriate changes to the system made, a final set of runs for
all test cases is made to verify that no further changes are needed. These should be recorded in the Test
Case Log as well. Once all testing is complete, the Test Case Log may be thought of as deliverable
documentation. If later it is determined that the expert system needs modification, the Log may be used
again and the process repeated.

Procedure: Test Case: #12

MET Event

Tries to Deploy, but stops half way
and returns to stow.

Comments on Test Case

00:02:27:12
00:02:27:14
00:02:27:15
00:02:27:26
00:02:27:28
00:02:27:44
00:02:27:45
... (omitted

Mech Pwr On
Lost Mech Pwr
Mech Pwr & Opstats On
Lost part of STO micros
Lost remaining STO micros
Lost DEP Opstat-2
Lost DEP Opstat-1

here, but recorded in original)

See data patterns recorded in diagram.
The opstats are turning on within 1
second of each other.

DESSY Conclusion(s) Performance Corrective Action & Rationale

Potential-Single-Motor-Drive
recorded @ 02:28:18

Shouldn't be concluding this. Review Potential-Single
rules. They do not appear
to be complete.

DESSY MPM/MRL Test Case Log Initials Date.

Figure 30. DESSY Test Case Log-first run.

79

Procedure: .MP=M..[_J_v. Test Case: #12b

MET Event

Tries to Deolov. but stons haft way
and returns to stow,

onT

see previous see previous

DESSY Conclusion(s) Performance Corrective Action & Rationale

Nominal Stow

(PSMD was removed)

Timer was not resetting when
system changed in-transit
directions.

Added condition to MPM
Timer Resume Rule to
check if Timer = OFF.
OK now.

DESSY MPM/MRL Test Case Log Initials Date

Figure 31. DESSY Test Case Log--second run.

stow

release

I MET: 00:02:27:44

SHLD FWD MID APT

Figure 32. Screen snapshot for recording data patterns. Anomalous data is circled.

80

7.4 The Cue Card: Map to the User Interface

The Cue Card is an excellent means of knowledge base documentation, as well as a tool that can be
greatly beneficial to end users both in learning the system and as a system reference. The cue cards
created for the DESSY MPlVl/MRL and end effector modules are available as Appendix B. The cue cards,
which consist of two color pages each, have specific formats and contain select types of information.
Because DESSY does not include a users guide, the cue card is especially important as a reference to
flight controllers.

The first page of each DESSY cue card provides a thorough description of all screen displays. A
snapshot of the screen is shown, and each item is labeled and includes a brief statement about the item's
function. Listings of all possible expert system conclusions for the system state and status are provided.
Color interpretations can also be found on this page.

Page two of the cue card focuses on navigation through displays and contains information on buttons,
tables, and pop-ups. An example is shown for every item type that has a pop-up, such as the telemetry
bubbles associated with MSIDs. Directions for viewing these pop-ups are given. Any special windows
associated with particular buttons are shown and described. Any tables that provide the user with
supplemental information are also provided.

Cue cards should be included with any software products delivered to the mission operations
environment. They are not difficult to construct and provide excellent screen documentation. They are
an effective communication tool, serving as a descriptive overview to anyone not familiar with the
intelligent system. In addition, their conciseness and convenience make them the ideal reference card for
use during mission operations.

7.5 The Tutorial: Interactive Exploration of the Intelligent System

A second type of documentation which is also quite effective in user training is the interactive tutorial.
The tutorial, if built properly, will allow a novice user to peruse the expert system interface and gain an
understanding of each display piece without any outside help. The DESSY tutorial was designed as a
page turner, which means that the user browses through a series of pages, each referencing a particular
expert system aspect. The screen is assembled piece by piece as the user progresses through the tutorial.
Once the user has completed this section, a demo section is available. Here the user runs test case
scenarios, gaining a complete view of the expert system use in mission operations.

7.5.1 The Tutorial as a Training Tool

Like the cue card, the tutorial focuses on the expert system through the user interface, rather than
covering specific rules and design strategies. Most end users do not need or want access to this more
advanced information. Interested users would be welcome to explore these aspects of the expert system
along side the developer. The pages of the tutorial contain simple explanations about screen items, how
they are used, and how they will change when data is present. User input buttons are provided to cause
tutorial displays to change based on the user's simulation of data. Thus the users can interact with the
displays as well as read about their functionality.

The DESSY tutorial covers both the MPM/MRL and end effector subsystems and contains both mission
header and summary information. As the tutorial user traverses the pages of the DESSY tutorial, the
MPM/MRL or end effector screen is built one section at a time. At the completion of the tutorial section,
the entire screen is built. This gives the user a chance to focus on each screen item, but concludes with a
view of the screen as a whole. In addition, sections may be repeated and pages may be traversed forwards
or backwards, providing a means to review any subsection at any time.

Once the user has completed this part of the tutorial, he or she can move to the demonstrations section.

This part of the tutorial is intended for users who understand the basic display items and are ready to see
how operational scenarios cause those items to behave together. There are MPM/MRL and end effector
demos to run, and the user can choose from nominal case demos or a variety of failure case demos.
When appropriate, there are even some random elements present to keep these demonstrations interesting.

81

Thetutorialwasfoundto beanexcellenttrainingmechanismfor newusers. It is simple to use and
requires no outside expert intervention or guidance. The DESSY developers feel that a tool such as this
provides an ideal training mechanism for new software users.

7.5.2 The Tutorial as Documentation

As well as being an effective training tool, the tutorial was useful in documenting both displays and test
scenarios. Because there is no DESSY users guide, the tutorial was important for initial user reference, as
well as for documenting display behaviors and storing test procedures. Because it can be easily viewed
by a variety of end users, it served as a means for user verification of test procedures and expert system
conclusions. As a documentation forum, the tutorial and cue card together are a more than adequate
replacement for a users guide and are in many ways superior.

7.5.3 Tutorial Design

One of the primary advantages of the DESSY tutorial was that it was simple to create. There were two
main areas where work had to be done. First, the pages of the page-turner had to be constructed and
appropriate text written. This included making sure the users could only turn to pages which were
appropriate from their current position within the tutorial. Second, because the screen was to be
constructed piece by piece and users were to interact with each piece, an altered copy of the expert system
screen had to be stored in which each appropriate screen section could be viewed separately. User input
buttons were created for each section to give the tutorial browser control of these screen displays. The
remaining parts of the expert system, however, remained unchanged, and the tutorial was simply added as
a layer on top of the intelligent system.

7.6 Demonstrations

Bnilders of software applications are frequently asked to provide demonstrations along with their
delivered products. This may be thought of as part of the documentation process and might even
provide introductory training to users and their supervisors. In the DESSY project, numerous
demonstrations have been given and a recommended demo approach has evolved. The following
sections contain the DESSY developers' view of effective demonstration techniques and discuss how to
organize software to provide effective demonstrations.

7.6.1 Effective Demonstrations

The two basic sources of scenarios for demonstrations are prerecorded data that can be played back
during the demo and user-written demonstration procedures, called "canned" demos. DESSY demos
typically used user-written procedures because this provided maximum flexibility during the demo. For
example, complicated scenarios with rapidly changing data can be broken into sequential steps, each step
played at a time. Once the scenario is understood, the entire demo sequence is played. This gives the
audience a better understanding of complex scenarios. In addition, the selection of demo procedures is
limited only by what the developers have constructed, thus providing a wide range of demo alternatives.

Using playback data for demonstrations has advantages as well, primarily because this is more realistic
than canned demo procedures. Viewers may see the updating of the telemetry clocks corresponding to
data changes, which gives the demo increased credibility. The disadvantage of these demos is that
manipulation of the playback software may be cumbersome. Choices of demonstration scenarios will
also be limited by available playback files.

Whichever demonstration method is used, demos should begin with a brief description of the software
functionality and its intended user base. A tour of the screen should then be provided with a quick
description of each screen element, and any particularly interesting pop-ups should be pointed out. It is
usually best to present a simple nominal case scenario first to give users an easy case to follow while you
point out expert system features. This can be followed by failure scenarios that illustrate more advanced
expert system capabilities. Finally, demonstrations are concluded with a few words about future project
work. Because every demo is a chance to "sell" the software, it is important to provide the most complete
view of the application, and look for opportunities for others to contribute to or expand on your work.

82

7.6.2 Organization of the Software to Support Demonstrations

Easy access to the canned demonstration procedures made giving DESSY demos go much more
smoothly. DESSY contains a header with buttons providing various expert system functions. One of the
buttons, labeled "Demos," leads to workspaces with a variety of demonstration choices. Included are the
standard nominal and failure-related scenarios that are typically run, and access to other procedures that
might become appropriate during the demonstration. These scenarios are in fact the same test cases used
for knowledge base testing and in the tutorial. They are contained within a simulation module which
may be optionally loaded along with the rest of the KB. Thus, through careful organization of the
knowledge base, the use of test scenarios for a variety of purposes can be optimized.

7.7 The Developer-User Handover

The final stage of expert system development is the handover of the application to the user community.
Although this may mark the end of the project life as you have known it, it is only the beginning of the
next project phase--that of software maintenance. Continued open communication between the original
developers and the software maintainers is important for the continued success of the intelligent system.
Although the software may no longer primarily be your responsibility, keep in mind that its success still
depends on your willingness to follow the application through its remaining life cycle and help maintain
it when necessary.

The DESSY project is currently in the handover phase. The DESSY developers have met with the
individuals responsible for maintaining the software in the control center environment. Although a
completed product was delivered, there is still additional work to be done. For example, the control
center data source is changing and the message logger currently used by the flight controllers is different
from that used by DESSY. DESSY will need to be altered to accommodate both these changes, and the
DESSY team will be involved. The bottom line is that the software developer's ties to the project are never
entirely eliminated. Being willing to maintain those ties at least in a consulting capacity will give the
application the greatest chance of success in its new environment.

The traditional waterfall model of software development perpetuates the perception that software can be
static. A common misconception is that if the requirements can be adequately identified and met, there
should be no further need to change the software. However, it is unrealistic to presume that anything can
remain static. Job responsibilities change over time. Other software supporting the user's job
performance will change. New hardware and software technology present new opportunities to support
human performance even better. Further experience with a software application can reveal oversights in
its design. Any of these conditions can result in a need for the application to change. If an application
cannot be modified gracefully to fit the new requirements, it will need to be replaced by a new one.
Continued developer ties with the user communitymake it more likely that the delivered software
application can be modified gracefully to continue good support to the users.

In Section 6.7, the idea of phased certification was introduced, based on experiences with both the
DESSY and RMSCO software. In these cases, there will likely be a portion of the software which has been
delivered and a portion which is still under active development. While there is active development
associated with a project, the lines of communication remain open so that requirements changes to the
delivered portion can be detected as the user discovers them. This continued communication will help
the developer to keep the application current so that it continues to support the user's needs.

Because DESSY is in the handover phase, we are likely to learn more about this topic after this document
is published. Consequently, the user may wish to check the World Wide Web (WWW) page which
contains an updated version of this document. This page is viewable by anyone with an Internet
connection and an html viewer such as Mosaic or Netscape. The address (Uniform Resource Locator, or
URL) is

http://tommy.jsc.nasa.gov/~clare/Developers_Guide/

83

References

Bachant, Judith and Soloway, E., "The Engineering of SCON," Communications of the ACM, 32:3, March
1989, pp. 311-317.

Chandrasekaran, B. and Punch, W.F. III, "Data Validation During Diagnosis: A Step Beyond Traditional
Sensor Validation," Proc. AAAI-87, Seattle, WA.

Chandrasekaran, B. and Punch, W.F. III, "Hierarchical Classification: Its Usefulness for Diagnosis and
Sensor Validation," IEEE Journal on Selected Areas in Communications, June 1988, pp. 884-891.

CLARE, Control Center Library of Applications for Reuse and Exchange, 1994.

Collins, David, "Payload Deployment and Retrieval System Overview Workbook," PDRS OV 2102, Mission
Operations Directorate, Johnson Space Center, Houston, Texas, February, 1988. (JSC internal document)

Cooper, G.F, "The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks,"
Artificial Intelligence 42, 1990.

DeCoste, D, Dynamic Across-Time Measurement Interpretation, Artificial Intelligence 51, 1991.

Dvorak, Daniel, "Expert Systems for Monitoring and Control," AI 87-55, The University of Texas at Austin,
Austin, Texas, May, 1987.

Gabrielian, A. and Franklin, M.K., "State-Based Specification of Complex Real-Time Systems," Proceedings,
Real-Time Systems Symposium, Huntsville, AL, December 6-8, 1988, pp. 2-11.

Hayes-Roth, F.,Waterman, and Lenat, Building Expert Systems, New York:: Addison-Wesley, 1983.

Hopcroft, John E., et al., Introduction to Automata Theo_, Languages, and Computation, New York:
Addison-Wesley, 1979.

Jordan, W., Keller, K., et al, "Software Storming: Combining Rapid Prototyping and Knowledge
Engineering," Computer, May 1989.

Land, Sherry, Malin, J., and Culp, D., "A Monitoring System with Tolerance for Real-Time Data Problems,"
Conference on Artificial Intelligence Applications, 1993.

Land, Sherry, Malin, J., and Culp, D., "DESSY: Making a Real-Time Expert System Robust and Useful,"
SOAR 1992 [Proceedings of Sixth Annual Space Operations, Applications, and Research Symposium].

Malin, Jane, Schreckenghost, D., et al., "Making Intelligent Systems Team Players: Case Studies and Design
Issues," NASA Technical Memorandum 104738, September 1991.

Malin, Jane, Schreckenghost, Debra, and Thronesbery, Carroll, "Design for Interaction Between Humans and
Intelligent Systems During Real-Time Fault Management," Proceedings of Fifth Annual Space Operations,
Applications, and Research Symposium, Johnson Space Center, Houston, Texas, July 9-11, 1991.

Marcot, Bruce, "Testing Your Knowledge Base," AI Expert, August 1987, pp. 42-47.

Moore, Robert and Kramer, Mark, "Expert Systems in On-Line Process Control," Lisp Machines, Inc., Los
Angeles, California., [198_].

Paasch, R.K. and Agogino, A.M., Automated Diagnosis for the Time of Flight Scintillation Array:
Development of a Structural and Behavioral Reasoning System, Proc. 8th CAIA, 1992.

Padalkar, Samir, et. al., "Real-Time Fault Diagnostics," IEEE Expert, June 1991, pp. 75-85.

84

SDRSDTEDisplayDescriptionReports:Displays3582M,1024K,.1030E,3592I,April 8, 1992.[Johnson
SpaceCenterinternalreport.]

Scarl,E.A.,etal..,"DiagnosisandSensorValidationThroughKnowledgeof StructureandFunction,"IEEE
Trans. Syst. Man Cybern. 17 (3), 1987.

Schreckenghost, Debra, Human-Computer Interface Design Concepts (DESSY blue book), W124, Mitre,
Corp., Houston, Texas, July 2, 1990.

Shontz, W.E., et al., Flight Deck Engine Advisor Final Report, NASA Contractor Report 189562, Langley
Research Center, Hampton, VA., February 1992.

Simpson, William and Sheppard, J., "System Complexity and Integrated Diagnostics," IEEE Design & Test of
Computers, September 1991, pp. 16-30.

Wellman, M.P., "Fundamental Concept of Qualitative Probabilistic Networks," Artificial Intelligence 44,
1990.

85

Appendix A

DESSY End Effector Failures

Appendix A

DESSY End Effector Failures

NOMINAL SEQUENCES
auto release

auto capture
manual release

manual capture
ee checkout (capture and release)

EE FLAG FAILURES (inconsistent talkbacks'
rigid-derigid
close-open
captured-open
extend-not-derigid
extend-rigid

EE CMDS FAILURES
release with commands alarm

capture with commands alarm
(this is the least mature area of ee fault recognition)

UNCOMMANDED RELEASE/CAPTURE
uncommanded derigid
uncommanded release

manual capture sequence with uncommanded release

AUTO TIMEOUT FAILURES

auto release with derig timeout
auto release with snare timeout
auto release with extend timeout
auto capture with snare timeout
auto capture with rigl timeout
auto capture with rig2 timeout
auto release commanding with no talkback effects
auto capture commanding with no talkback effects

MANUAL TIMEOUT FAILURES
manual release with derig timeout
manual release with snare timeout
manual release with extend timeout

manual capture with snare timeout
manual capture with rigl timeout
manual capture with rig2 timeout

SEQUENCE VIOLATIONS
auto capture without limp
auto release with CLOSE ms failed on

capture with auto mode switch failed off
capture with manual mode switch failed off
release with auto mode switch failed off
release with manual mode switch failed off

A-1

Appendix B

DESSY Cue Cards

B-1

=:

B-2

C

=
O

I,p.(

*wq

o.

O
[-

U.]

U.l

Z
UJ

0

tJ

o=

.hi=

6

O o

._-_.1.'-_..-_ O
_1 _ _._ o _

B-3

o
o

U_

u_

t_,.o
l" . O '_

oo_.f,_..

_ge

o o

.__._o=.__

__ .-_;._

l:_,O C_ O R- •

•_.-o o o

o o

.___ _-_

e_ .= e- e" e"

.'- 0 '_ _ _ _

_ _._ ._ ._ _ _ _

o

9m

o _
._.._ _ _

_ _-B _--'-_ ,_.

N_ _ _ _ -__.__

al

. _

o

u_

r_

o

=

o
,4

©

U

T

Z

U_

%

%

%

X

X

X

X]i°

B

I_1_

• !

i.- _' =o _ o o

_ x x_ 6 _

-................_x xx

_= _,_x×_

i_ x _Ix x x_

! x _ x _

_') O:

]3-4

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-O188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the date needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection

of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations arid Reports, 1215 Jefferson Davis Highway,

Suite 1204, Arlington, VA 22202-4302, and to the Office of Management end Budget, Paperwork Reduction Project (0704-018a}, Washington , DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1995 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Guide to Developing Intelligent Monitoring Systems

6. AUTHOR(S)

Sherry A. Land; Jane T. Malin; Carroll Thronesbery*; Debra L. Schreckenghost*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lyndon B. Johnson Space Center

Automation, Robotics, and Simulation Division

Houston, Texas 77058

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBERS

S-790

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

TM-104807

11. SUPPLEMENTARY NOTES

*Metrica Inc., Houston, Texas

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited

Available from the NASA Center for AeroSpace Information (CASI)

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390 Subject Category: 63

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This reference guide for developers of intelligent monitoring systems is based on lessons learned by developers of the DEcision

Support SYstem (DESSY), an expert system that monitors Space Shuttle telemetry data in real time. DESSY makes inferences

about commands, state transitions, and simple failures. It performs failure detection rather than in-depth failure diagnostics. A

listing of rules from DESSY and cue cards from DESSY subsystems are included to give the development community a better

understanding of the selected model system. The G-2 programming tool used in developing DESSY provides an

object-oriented, rule-based environment, but many of the principles in use here can be applied to any type of monitoring

intelligent system. The step-by-step instructions and examples given for each stage of development are in G-2, but can be used

with other development tools. This guide first defines the authors' concept of real-time monitoring systems, then tells

prospective developers how to determine system requirements, how to build the system through a combined

design/development process, and how to solve problems involved in working with real-time data. It explains the relationships

among operational prototyping, software evolution, and the user interface. It also explains methods of testing, verification, and

validation. It includes suggestions for preparing reference documentation and training users.

14. SUBJECT TERMS

Expert Systems, Artificial Intelligence, Computer Systems Programs, Monitors, Real

Time Operation, Manuals

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES
103

16. PRICE CODE

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std. 239-18

298-102

